Skip to Content
Merck
  • Solid Solutions of Rare Earth Cations in Mesoporous Anatase Beads and Their Performances in Dye-Sensitized Solar Cells.

Solid Solutions of Rare Earth Cations in Mesoporous Anatase Beads and Their Performances in Dye-Sensitized Solar Cells.

Scientific reports (2015-11-19)
Carmen Cavallo, Alberto Salleo, Daniele Gozzi, Francesco Di Pascasio, Simone Quaranta, Riccardo Panetta, Alessandro Latini
ABSTRACT

Solid solutions of the rare earth (RE) cations Pr(3+), Nd(3+), Sm(3+), Gd(3+), Er(3+) and Yb(3+) in anatase TiO2 have been synthesized as mesoporous beads in the concentration range 0.1-0.3% of metal atoms. The solid solutions were have been characterized by XRD, SEM, diffuse reflectance UV-Vis spectroscopy, BET and BJH surface analysis. All the solid solutions possess high specific surface areas, up to more than 100 m(2)/g. The amount of adsorbed dye in each photoanode has been determined spectrophotometrically. All the samples were tested as photoanodes in dye-sensitized solar cells (DSSCs) using N719 as dye and a nonvolatile, benzonitrile based electrolyte. All the cells were have been tested by conversion efficiency (J-V), quantum efficiency (IPCE), electrochemical impedance spectroscopy (EIS) and dark current measurements. While lighter RE cations (Pr(3+), Nd(3+)) limit the performance of DSSCs compared to pure anatase mesoporous beads, cations from Sm(3+) onwards enhance the performance of the devices. A maximum conversion efficiency of 8.7% for Er(3+) at a concentration of 0.2% has been achieved. This is a remarkable efficiency value for a DSSC employing N719 dye without co-adsorbents and a nonvolatile electrolyte. For each RE cation the maximum performances are obtained for a concentration of 0.2% metal atoms.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Ethanol, JIS first grade, 94.8-95.8%
Sigma-Aldrich
Hydrochloric acid solution, 1 M
Sigma-Aldrich
Acetic acid, 99.5-100.0%
Sigma-Aldrich
Hydrochloric acid solution, 6 M
Sigma-Aldrich
Acetic acid, SAJ first grade, ≥99.0%
Sigma-Aldrich
Acetic acid, JIS special grade, ≥99.7%
Sigma-Aldrich
Hydrochloric acid solution, 12 M
Sigma-Aldrich
Acetic acid solution, 1 M, 1 N
Sigma-Aldrich
Hydrochloric acid solution, 0.2 M
Sigma-Aldrich
Acetic acid, ≥99.7%
Sigma-Aldrich
Hydrogen peroxide solution, SAJ first grade, ≥30.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.05 M
Sigma-Aldrich
Acetic acid, ≥99.7%
Sigma-Aldrich
Hydrochloric acid, SAJ first grade, 35.0-37.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.02 M
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Water, for cell biology, sterile ultrafiltered
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Hydrogen peroxide solution, contains potassium stannate as inhibitor, 30-32 wt. % in water, semiconductor grade, 99.999% trace metals basis
Sigma-Aldrich
Lithium iodide, 99.9% trace metals basis
Sigma-Aldrich
Neodymium, powder, −40 mesh, ≥99% trace rare earth metals basis
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Sigma-Aldrich
Lithium iodide, AnhydroBeads, 99%
Sigma-Aldrich
Lithium iodide, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Ruthenium on carbon, extent of labeling: 5 wt. % loading
Sigma-Aldrich
Lithium iodide, AnhydroBeads, −10 mesh, 99.99% trace metals basis