Skip to Content
Merck
  • pH-triggered release of manganese from MnAu nanoparticles that enables cellular neuronal differentiation without cellular toxicity.

pH-triggered release of manganese from MnAu nanoparticles that enables cellular neuronal differentiation without cellular toxicity.

Biomaterials (2015-05-03)
Suk Ho Bhang, Jin Han, Hyeon-Ki Jang, Myung-Kyung Noh, Wan-Geun La, Minyoung Yi, Woo-Sik Kim, Yunhee Kim Kwon, Taekyung Yu, Byung-Soo Kim
ABSTRACT

At high concentrations, manganese (Mn) promotes cellular neurodevelopment but causes toxicity. Here, we report that Mn ion at high concentrations can be delivered to pheochromocytoma 12 (PC12) cells using gold nanoparticles (AuNPs) to enhance cellular neurodevelopment without toxicity. Mn(2+) release from AuNPs was designed to be pH-responsive so that low pH condition of the cell endosomes can trigger in situ release of Mn(2+) from AuNPs after cellular uptake of Mn-incorporated AuNPs (MnAuNPs). Due to the differences in reduction potentials of Mn and Au, only Mn ionized and released while Au remained intact when MnAuNPs were uptaken by cells. Compared to PC12 cells treated with a high concentration of free Mn(2+), PC12 cells treated with an equal concentration of MnAuNPs resulted in significantly enhanced cellular neurodevelopment with decreased apoptosis and necrosis. Treatment with a high concentration of free Mn(2+) led to an abrupt consumption of a large amount of ATP for the intracellular transport of Mn(2+) through the ion channel of the cell membrane and to mitochondrial damage caused by the high intracellular concentration of Mn(2+), both of which resulted in cell necrosis and apoptosis. In contrast, MnAuNP-treated cells consumed much smaller amount of ATP for the intracellular transport of MnAuNPs by endocytosis and showed pH-triggered in situ release of Mn(2+) from the MnAuNPs in the endosomes of the cells, both of which prevented the cell death caused by ATP depletion and mitochondrial damage. To our knowledge, this is the first report on the use of AuNPs as a vehicle for pH-responsive, intracellular delivery of metal ion, which may open a new window for drug delivery and clinical therapy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Ethanol, JIS first grade, 94.8-95.8%
Sigma-Aldrich
Sodium selenite, SAJ first grade, ≥90.0%
Sigma-Aldrich
Sodium dodecyl sulfate, SAJ special grade, ≥97.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0%
Sigma-Aldrich
Chloroform, JIS 300, ≥99.0%, for residue analysis
Sigma-Aldrich
Ethylene glycol, JIS special grade, ≥99.5%
Sigma-Aldrich
Chloroform, JIS special grade, ≥99.0%
Sigma-Aldrich
Chloroform, SAJ super special grade, ≥99.0%
Sigma-Aldrich
Ethylene glycol, SAJ first grade, ≥99.0%
Sigma-Aldrich
Chloroform, SAJ first grade, ≥99.0%, contains 0.4-0.8% ethanol
Supelco
Ethylene glycol solution, NMR reference standard, 80% in DMSO-d6 (99.9 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Chloroform, suitable for HPLC
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Chloroform, ACS reagent, ≥99.8%, contains amylenes as stabilizer
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90% ((Assay))
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium selenite, 99%
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Sodium borohydride solution, 2.0 M in triethylene glycol dimethyl ether
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Chloroform, ACS reagent, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Supelco
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Sodium borohydride solution, ~12 wt. % in 14 M NaOH
Sigma-Aldrich
Ethylene glycol, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Putrescine dihydrochloride, ≥98% (TLC)
Sigma-Aldrich
Putrescine dihydrochloride, γ-irradiated, lyophilized powder, BioXtra, suitable for cell culture
Sigma-Aldrich
Putrescine dihydrochloride, powder, BioReagent, suitable for cell culture