Skip to Content
Merck
  • Structure-based drug design identifies polythiophenes as antiprion compounds.

Structure-based drug design identifies polythiophenes as antiprion compounds.

Science translational medicine (2015-08-08)
Uli S Herrmann, Anne K Schütz, Hamid Shirani, Danzhi Huang, Dino Saban, Mario Nuvolone, Bei Li, Boris Ballmer, Andreas K O Åslund, Jeffrey J Mason, Elisabeth Rushing, Herbert Budka, Sofie Nyström, Per Hammarström, Anja Böckmann, Amedeo Caflisch, Beat H Meier, K Peter R Nilsson, Simone Hornemann, Adriano Aguzzi
ABSTRACT

Prions cause transmissible spongiform encephalopathies for which no treatment exists. Prions consist of PrP(Sc), a misfolded and aggregated form of the cellular prion protein (PrP(C)). We explore the antiprion properties of luminescent conjugated polythiophenes (LCPs) that bind and stabilize ordered protein aggregates. By administering a library of structurally diverse LCPs to the brains of prion-infected mice via osmotic minipumps, we found that antiprion activity required a minimum of five thiophene rings bearing regularly spaced carboxyl side groups. Solid-state nuclear magnetic resonance analyses and molecular dynamics simulations revealed that anionic side chains interacted with complementary, regularly spaced cationic amyloid residues of model prions. These findings allowed us to extract structural rules governing the interaction between LCPs and protein aggregates, which we then used to design a new set of LCPs with optimized binding. The new set of LCPs showed robust prophylactic and therapeutic potency in prion-infected mice, with the lead compound extending survival by >80% and showing activity against both mouse and hamster prions as well as efficacy upon intraperitoneal administration into mice. These results demonstrate the feasibility of targeted chemical design of compounds that may be useful for treating diseases of aberrant protein aggregation such as prion disease.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Ethanol, JIS first grade, 94.8-95.8%
Sigma-Aldrich
Sodium dodecyl sulfate, SAJ special grade, ≥97.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0%
Sigma-Aldrich
Sulfuric acid, SAJ first grade, ≥95.0%
Sigma-Aldrich
Acetic acid, 99.5-100.0%
Sigma-Aldrich
Sulfuric acid solution, 0.1 M
Sigma-Aldrich
Sulfuric acid solution, 0.05 M
Sigma-Aldrich
Sulfuric acid solution, 5 mM
Sigma-Aldrich
Acetic acid, SAJ first grade, ≥99.0%
Sigma-Aldrich
Acetic acid, JIS special grade, ≥99.7%
Sigma-Aldrich
Acetic acid solution, 1 M, 1 N
Sigma-Aldrich
Sulfuric acid solution, 0.025 M
Sigma-Aldrich
Sulfuric acid solution, 0.5 M
Sigma-Aldrich
Acetic acid, ≥99.7%
Sigma-Aldrich
Acetic acid, ≥99.7%
Sigma-Aldrich
BIS-TRIS, BioPerformance Certified, suitable for cell culture, suitable for insect cell culture, ≥98.0%
Sigma-Aldrich
Sulfuric acid, 99.999%
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
BIS-TRIS, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
DL-Dithiothreitol solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90% ((Assay))
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, 92.5-100.5% based on total alkyl sulfate content basis