Skip to Content
Merck

Salt effects in electromembrane extraction.

Journal of chromatography. A (2014-05-06)
Knut Fredrik Seip, Henrik Jensen, Thanh Elisabeth Kieu, Astrid Gjelstad, Stig Pedersen-Bjergaard
ABSTRACT

Electromembrane extraction (EME) was performed on samples containing substantial amounts of NaCl to investigate how the presence of salts affected the recovery, repeatability, and membrane current in the extraction system. A group of 17 non-polar basic drugs with various physical chemical properties were used as model analytes. When EME was performed in a hollow fiber setup with a supported liquid membrane (SLM) comprised of 2-nitrophenyl octyl ether (NPOE), a substantial reduction in recovery was seen for eight of the substances when 2.5% (w/v) NaCl was present. No correlation between this loss and the physical chemical properties of these substances was seen. The recovery loss was hypothesized to be caused by ion pairing in the SLM, and a mathematical model for the extraction recovery in the presence of salts was made according to the experimental observations. Some variations to the EME system reduced this recovery loss, such as changing the SLM solvent from NPOE to 6-undecanone, or by using a different EME setup with more favorable volume ratios. This was in line with the ion pairing hypothesis and the mathematical model. This thorough investigation of how salts affect EME improves the theoretical understanding of the extraction process, and can contribute to the future development and optimization of the technique.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium sulfate, ≥99.99% trace metals basis
Sigma-Aldrich
Potassium chloride, 99.999% trace metals basis
Sigma-Aldrich
6-Undecanone, 97%
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Potassium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Potassium chloride, tested according to Ph. Eur.
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Supelco
Sodium hydroxide solution, 49-51% in water, eluent for IC
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Supelco
Potassium chloride solution, conductance standard C acc. to ISO 7888, 0.001 M KCl
Supelco
Potassium chloride solution, for Ag/AgCl electrodes, ~3 M KCl, saturated with silver chloride
Supelco
Potassium chloride solution, BioUltra, ~3 M in H2O
Supelco
Potassium chloride solution, conductance standard A acc. to ISO 7888, 0.1 M KCl
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Supelco
ISA (ionic strength adjustment solution: 1 M KCl), 1 M KCl
Sigma-Aldrich
Imidazole, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Sodium sulfate, BioUltra, anhydrous, ≥99.0% (T)
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Potassium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Potassium chloride, ≥99.99% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Phosphoric acid solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 4.2 mm × 8 in. , WGS-5BL Coaxial NMR tube
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Potassium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl