Skip to Content
Merck
  • Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals.

Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals.

ACS nano (2015-02-11)
Feng Zhu, Long Men, Yijun Guo, Qiaochu Zhu, Ujjal Bhattacharjee, Peter M Goodwin, Jacob W Petrich, Emily A Smith, Javier Vela
ABSTRACT

Organometallic halide perovskites CH3NH3PbX3 (X = I, Br, Cl) have quickly become one of the most promising semiconductors for solar cells, with photovoltaics made of these materials reaching power conversion efficiencies of near 20%. Improving our ability to harness the full potential of organometal halide perovskites will require more controllable syntheses that permit a detailed understanding of their fundamental chemistry and photophysics. In this manuscript, we systematically synthesize CH3NH3PbX3 (X = I, Br) nanocrystals with different morphologies (dots, rods, plates or sheets) by using different solvents and capping ligands. CH3NH3PbX3 nanowires and nanorods capped with octylammonium halides show relatively higher photoluminescence (PL) quantum yields and long PL lifetimes. CH3NH3PbI3 nanowires monitored at the single particle level show shape-correlated PL emission across whole particles, with little photobleaching observed and very few off periods. This work highlights the potential of low-dimensional organometal halide perovskite semiconductors in constructing new porous and nanostructured solar cell architectures, as well as in applying these materials to other fields such as light-emitting devices and single particle imaging and tracking.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
Methylamine solution, 33 wt. % in absolute ethanol ((denatured with 1% toluene))
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
N,N-Dimethylformamide, anhydrous, 99.8%
Supelco
Acetone, analytical standard
Supelco
Tetrahydrofuran, analytical standard
Sigma-Aldrich
Methylamine solution, 40 wt. % in H2O
Supelco
Tetrahydrofuran, Selectophore, ≥99.5%
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Methylamine solution, 2.0 M in THF
Sigma-Aldrich
N,N-Dimethylformamide, ACS reagent, ≥99.8%
Sigma-Aldrich
Methylamine solution, 2.0 M in methanol
Sigma-Aldrich
Acetone, natural, ≥97%
Sigma-Aldrich
Tetrahydrofuran, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
Tetrahydrofuran, suitable for HPLC, ≥99.9%, inhibitor-free
Sigma-Aldrich
N,N-Dimethylformamide, for molecular biology, ≥99%
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Sigma-Aldrich
Tetrahydrofuran, SAJ first grade, ≥99.0%
Sigma-Aldrich
Acetone, ≥99.5%, for residue analysis
Sigma-Aldrich
Ethanol, JIS special grade, 94.8-95.8%
Sigma-Aldrich
N,N-Dimethylformamide, JIS special grade, ≥99.5%
Sigma-Aldrich
Ethanol, JIS first grade, 94.8-95.8%
Supelco
N,N-Dimethylformamide, analytical standard
Sigma-Aldrich
Acetone, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 0.05% formic acid, 40.0% 2-propanol
Sigma-Aldrich
Tetrahydrofuran, JIS special grade, ≥99.5%