Skip to Content
Merck
  • Chromatin and Cytoskeletal Tethering Determine Nuclear Morphology in Progerin-Expressing Cells.

Chromatin and Cytoskeletal Tethering Determine Nuclear Morphology in Progerin-Expressing Cells.

Biophysical journal (2020-04-23)
Maria Chiara Lionetti, Silvia Bonfanti, Maria Rita Fumagalli, Zoe Budrikis, Francesc Font-Clos, Giulio Costantini, Oleksandr Chepizhko, Stefano Zapperi, Caterina A M La Porta
ABSTRACT

The nuclear morphology of eukaryotic cells is determined by the interplay between the lamina forming the nuclear skeleton, the chromatin inside the nucleus, and the coupling with the cytoskeleton. Nuclear alterations are often associated with pathological conditions as in Hutchinson-Gilford progeria syndrome, in which a mutation in the lamin A gene yields an altered form of the protein, named progerin, and an aberrant nuclear shape. Here, we introduce an inducible cellular model of Hutchinson-Gilford progeria syndrome in HeLa cells in which increased progerin expression leads to alterations in the coupling of the lamin shell with cytoskeletal or chromatin tethers as well as with polycomb group proteins. Furthermore, our experiments show that progerin expression leads to enhanced nuclear shape fluctuations in response to cytoskeletal activity. To interpret the experimental results, we introduce a computational model of the cell nucleus that explicitly includes chromatin fibers, the nuclear shell, and coupling with the cytoskeleton. The model allows us to investigate how the geometrical organization of the chromatin-lamin tether affects nuclear morphology and shape fluctuations. In sum, our findings highlight the crucial role played by lamin-chromatin and lamin-cytoskeletal alterations in determining nuclear shape morphology and in affecting cellular functions and gene regulation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-GAPDH antibody produced in rabbit, ~1 mg/mL, affinity isolated antibody, buffered aqueous solution
Cloning cylinders, glass, volume 150 μL
Sigma-Aldrich
(−)-Blebbistatin, solid, synthetic
Sigma-Aldrich
Anti-Vinculin antibody, Mouse monoclonal, clone hVIN-1, purified from hybridoma cell culture
Sigma-Aldrich
G 418 disulfate salt, powder, BioReagent, suitable for cell culture
Millipore
Protein A–Agarose, lyophilized powder
Sigma-Aldrich
Anti-β-Tubulin antibody, Mouse monoclonal, ~2.0 mg/mL, clone AA2, purified from hybridoma cell culture
Sigma-Aldrich
SMIFH2, ≥98% (HPLC)
Sigma-Aldrich
Ampicillin, Ready Made Solution, 100 mg/mL, 0.2 μm filtered
Sigma-Aldrich
Duolink® In Situ Mounting Medium with DAPI
Sigma-Aldrich
Anti-Nesprin-2 Antibody, clone K20-478, clone K20-478, from mouse