Skip to Content
Merck
  • Overexpression of BMPER in Ovarian Cancer and the Mechanism by which It Promotes Malignant Biological Behavior in Tumor Cells.

Overexpression of BMPER in Ovarian Cancer and the Mechanism by which It Promotes Malignant Biological Behavior in Tumor Cells.

BioMed research international (2020-04-21)
Yong Xi, Xin Nie, Jing Wang, Lingling Gao, Bei Lin
ABSTRACT

BMPER has been reported to be associated with the biological behavior of a few malignant tumors, but the mechanism is still unclear. We aimed to detect BMPER expression in ovarian epithelial tumor tissues and its effects on their biological behaviors, as well as to elucidate the possible mechanism. BMPER expression in ovarian epithelial tumor tissues was detected by immunohistochemistry. BMPER expression in ovarian cancer cell lines was inhibited via RNA interference. Changes in the malignant behaviors of ovarian cancer cells were detected by MTT, wound healing, Transwell, and flow cytometry assays. Changes in proteins in the MAPK and autophagy-related signaling pathways were detected by Western blot analysis. The expression of BMPER was significantly upregulated in ovarian epithelial malignant tumors and was related to increased lymph node metastasis and lower survival rate. High BMPER expression is an independent risk factor for poor prognosis in patients. Inhibition of BMPER inhibited the proliferation, invasion, and migration of ovarian cancer cells and promoted apoptosis. In addition, BMPER downregulation decreased the expression of PCNA, Bcl-2, MMP2, and MMP9 and increased the expression of Bax. Moreover, the levels of p-ERK, p-MEK, and the autophagy-related protein p-mTOR were decreased, and Beclin 1 levels and the LC3II/I ratio were increased. Our findings indicated that BMPER is closely related to poor prognosis in ovarian cancer. BMPER plays a role in promoting the malignant biological behavior of tumor cells through the MAPK and autophagy-related signaling pathways.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting human BMPER