Skip to Content
Merck
  • An IL-13 promoter polymorphism associated with liver fibrosis in patients with Schistosoma japonicum.

An IL-13 promoter polymorphism associated with liver fibrosis in patients with Schistosoma japonicum.

PloS one (2015-08-11)
Xin Long, Qian Chen, Jianping Zhao, Nicholas Rafaels, Priyanka Mathias, Huifang Liang, Joseph Potee, Monica Campbell, Bixiang Zhang, Li Gao, Steve N Georas, Donata Vercelli, Terri H Beaty, Ingo Ruczinski, Rasika Mathias, Kathleen C Barnes, Xiaoping Chen
ABSTRACT

The aim of this study was to determine whether two polymorphisms in the gene encoding IL13 previously associated with Schistosoma hematobium (S. hematobium) and S. mansoni infection are associated with S. japonicum infection. Single nucleotide polymorphisms (SNPs) rs1800925 (IL13/-1112C>T) and rs20541 (IL13R130Q) were genotyped in 947 unrelated individuals (307 chronically infected, 339 late-stage with liver fibrosis, 301 uninfected controls) from a schistosomiasis-endemic area of Hubei province in China. Regression models were used to evaluate allelic and haplotypic associations with chronic and late-stage schistosomiasis adjusted for non-genetic covariates. Expression of IL-13 was measured in S. japonicun-infected liver fibrosis tissue and normal liver tissue from uninfected controls by immunohistochemistry (IHC). The role of rs1800925 in IL-13 transcription was further determined by Luciferase report assay using the recombinant PGL4.17-rs180092 plasmid. We found SNP rs1800925T was associated with late-stage schistosomiasis caused by S. japonicum but not chronic schistosomiasis (OR = 1.39, 95%CI = 1.02-1.91, p = 0.03) and uninfected controls (OR = 1.49, 95%CI = 1.03-2.13, p = 0.03). Moreover, the haplotype rs1800925T-rs20541C increased the risk of disease progression to late-stage schistosomiasis (OR = 1.46, p = 0.035), whereas haplotype rs1800925C-rs20541A showed a protective role against development of late-stage schistosomiasis (F = 0.188, OR = 0.61, p = 0.002). Furthermore, S. japonicum-induced fibrotic liver tissue had higher IL13 expression than normal liver tissue. Plasmid PGL4.17-rs1800925T showed a stronger relative luciferase activity than Plasmid PGL4.17-rs1800925C in 293FT, QSG-7701 and HL-7702 cell lines. In conclusion, the functional IL13 polymorphism, rs1800925T, previously associated with risk of schistosomiasis, also contributes to risk of late-stage schistosomiasis caused by S. japonicum.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90% ((Assay))
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Bicinchoninic acid disodium salt hydrate, ≥98% (HPLC)
Sigma-Aldrich
IL-13 from rat, recombinant, expressed in E. coli, ≥95% (SDS-PAGE), ≥95% (HPLC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC), free-flowing, Redi-Dri
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Nitrogen, ≥99.998%
Sigma-Aldrich
IL-13 human, Animal-component free, recombinant, expressed in E. coli, ≥98% (SDS-PAGE), ≥98% (HPLC)
Sigma-Aldrich
IL-13 Variant human, recombinant, expressed in E. coli, ≥98% (SDS-PAGE), ≥98% (HPLC), suitable for cell culture