Skip to Content
Merck

Ionizing radiation induces tumor cell lysyl oxidase secretion.

BMC cancer (2014-07-24)
Colette J Shen, Ashish Sharma, Dinh-Van Vuong, Janine T Erler, Martin Pruschy, Angela Broggini-Tenzer
ABSTRACT

Ionizing radiation (IR) is a mainstay of cancer therapy, but irradiation can at times also lead to stress responses, which counteract IR-induced cytotoxicity. IR also triggers cellular secretion of vascular endothelial growth factor, transforming growth factor β and matrix metalloproteinases, among others, to promote tumor progression. Lysyl oxidase is known to play an important role in hypoxia-dependent cancer cell dissemination and metastasis. Here, we investigated the effects of IR on the expression and secretion of lysyl oxidase (LOX) from tumor cells. LOX-secretion along with enzymatic activity was investigated in multiple tumor cell lines in response to irradiation. Transwell migration assays were performed to evaluate invasive capacity of naïve tumor cells in response to IR-induced LOX. In vivo studies for confirming IR-enhanced LOX were performed employing immunohistochemistry of tumor tissues and ex vivo analysis of murine blood serum derived from locally irradiated A549-derived tumor xenografts. LOX was secreted in a dose dependent way from several tumor cell lines in response to irradiation. IR did not increase LOX-transcription but induced LOX-secretion. LOX-secretion could not be prevented by the microtubule stabilizing agent patupilone. In contrast, hypoxia induced LOX-transcription, and interestingly, hypoxia-dependent LOX-secretion could be counteracted by patupilone. Conditioned media from irradiated tumor cells promoted invasiveness of naïve tumor cells, while conditioned media from irradiated, LOX- siRNA-silenced cells did not stimulate their invasive capacity. Locally applied irradiation to tumor xenografts also increased LOX-secretion in vivo and resulted in enhanced LOX-levels in the murine blood serum. These results indicate a differential regulation of LOX-expression and secretion in response to IR and hypoxia, and suggest that LOX may contribute towards an IR-induced migratory phenotype in sublethally-irradiated tumor cells and tumor progression.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Urea-12C, 99.9 atom % 12C
Sigma-Aldrich
Urea solution, BioUltra, ~8 M in H2O
Sigma-Aldrich
Urea solution, 40 % (w/v) in H2O
Sigma-Aldrich
(−)-Epothilone B, from Sorangium cellulosum, ≥98% (HPLC)
Millipore
Urea solution, suitable for microbiology, 40% in H2O
Sigma-Aldrich
Calcium chloride, AnhydroBeads, −10 mesh, ≥99.9% trace metals basis
Sigma-Aldrich
Urea, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%, 99.0-101.0% (calc. on dry substance)
Sigma-Aldrich
Calcium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Urea, BioUltra, for molecular biology, 99% (T)
Sigma-Aldrich
Urea, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99%
Sigma-Aldrich
Calcium chloride, AnhydroBeads, −10 mesh, ≥99.99% trace metals basis
Sigma-Aldrich
Calcium chloride
Sigma-Aldrich
Urea, meets USP testing specifications
Sigma-Aldrich
Urea, powder, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Urea, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
Urea, suitable for electrophoresis
Sigma-Aldrich
Urea, ReagentPlus®, ≥99.5%, pellets
Sigma-Aldrich
Calcium chloride, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
Supelco
Calcium ion solution for ISE, 0.1 M Ca, analytical standard (for ion-selective electrodes)
USP
Urea, United States Pharmacopeia (USP) Reference Standard
Supelco
Urea, 8 M (after reconstitution with 16 mL high purity water)
Supelco
Urea, analytical standard
Urea, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Calcium chloride, anhydrous, powder, 99.99% trace metals basis