Skip to Content
Merck
All Photos(1)

Key Documents

20255-U

Supelco

ORBO 100 on Carbotrap® B (20/40), 350/175 mg

W,W,W separators, O.D. × L 7 mm × 110 mm, pkg of 25 ea

Synonym(s):

ORBO Carbotrap® Tube

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12190000
NACRES:
NB.24

material

W,W,W separators

product line

ORBO

composition

Bed A, 350 mg
Bed B, 175 mg

packaging

pkg of 25 ea

manufacturer/tradename

ORBO 100

technique(s)

active air sampling: suitable

O.D. × L

7 mm × 110 mm

matrix

Carbotrap® B Graphitized Carbon Black (GCB)

particle size

20-40 mesh

application(s)

air monitoring
environmental
industrial hygiene

Looking for similar products? Visit Product Comparison Guide

General description

ORBO sorbent tubes (W,W,W separators, O.D. × L 7 mm × 110 mm) contain two beds of the same selective adsorbent separated by glass wool or foam, for gas and vapor sampling. The dual-layer or two-bed construction of the tube allows for any sample breakthrough to be captured in the smaller back-up bed.

Legal Information

Carbotrap is a registered trademark of Merck KGaA, Darmstadt, Germany
ORBO is a trademark of Sigma-Aldrich Co. LLC

Storage Class Code

11 - Combustible Solids

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Gary Strobel et al.
Biotechnology letters, 35(4), 539-552 (2012-12-19)
The construction and testing of a unique instrument, the Paleobiosphere, which mimics some of the conditions of the ancient earth, is described. The instrument provides an experimental testing system for determining if certain microbes, when provided an adequate environment, can
Florian Gahleitner et al.
Bioanalysis, 5(18), 2239-2247 (2013-09-24)
In-community non-invasive identification of asthma-specific volatile organic compounds (VOCs) in exhaled breath presents opportunities to characterize phenotypes, and monitor disease state and therapies. The feasibility of breath sampling with children and the preliminary identification of childhood asthma markers were studied.
Tung-Min Wu et al.
Journal of chromatography. A, 1105(1-2), 168-175 (2005-10-08)
A mesoporous silica MCM-41 with pore size of 29A was synthesized and assessed for its applicability as a sorbent for in-line trapping of volatile organic compounds (VOCs) from air samples. Several commercially available microporous carbon molecular sieves, i.e., Carbosieve SIII
E Gallego et al.
The Science of the total environment, 470-471, 587-599 (2013-11-02)
Closed landfills can be a source of VOC and odorous nuisances to their atmospheric surroundings. A self-designed cylindrical air flux chamber was used to measure VOC surface emissions in a closed industrial landfill located in Cerdanyola del Vallès, Catalonia, Spain.
E Gallego et al.
Talanta, 81(3), 916-924 (2010-03-20)
A comparison between two types of adsorbent tubes, the commonly used Tenax TA and a multi-sorbent bed (Carbotrap, Carbopack X, Carboxen 569) tube developed in our laboratory, has been done to evaluate their usefulness in the analysis of VOCs in

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service