Skip to Content
Merck
  • Hepatitis B Virus X Protein (HBx) Suppresses Transcription Factor EB (TFEB) Resulting in Stabilization of Integrin Beta 1 (ITGB1) in Hepatocellular Carcinoma Cells.

Hepatitis B Virus X Protein (HBx) Suppresses Transcription Factor EB (TFEB) Resulting in Stabilization of Integrin Beta 1 (ITGB1) in Hepatocellular Carcinoma Cells.

Cancers (2021-04-04)
Chunyan Zhang, Huan Yang, Liwei Pan, Guangfu Zhao, Ruofei Zhang, Tianci Zhang, Zhixiong Xiao, Ying Tong, Yi Zhang, Richard Hu, Stephen J Pandol, Yuan-Ping Han
ABSTRACT

Hepatitis B virus (HBV) infection is a major etiological risk for the incidence of hepatocellular carcinoma (HCC), and HBV X protein (HBx) is essential for oncogenic transformation. It is not known that if HBx can sabotage the lysosomal system for transformation and tumorigenesis, or its mechanism if it does have an effect. Examining clinical data, we observed that the downregulation of lysosomal components and transcription factor EB (TFEB) was associated with a poor prognosis of HCC patients. In HCC cells, we found that expression of HBx suppressed TFEB, impaired biogenesis of autophagic-lysosome, and promoted cellular dissemination. HBx mediated downregulation of TFEB led to impairment of autophagic/lysosomal biogenesis and flux, and consequently, accumulation of integrin beta 1 (ITGB1) for motility of HCC cells. Conversely, TFEB, in a steady-state condition, through induction of lysosomal biogenesis restrained ITGB1 levels and limited mobility of HCC cells. Specifically, overexpression of TFEB upregulated and activated the cysteine proteases including cathepsin L (CTSL) to degrade ITGB1. Conversely, expression of cystatin A (CSTA) or cystatin B (CSTB), the cellular inhibitors of lysosomal cysteine proteinases, spared ITGB1 from degradation and promoted dissemination of HCC cells. Taken together, this study suggests a potential mechanism for HBV-mediated malignancy, showing that HBx mediated downregulation of TFEB leads to accumulation of ITGB1 for HCC cell migration.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Chloroquine diphosphate salt, powder or crystals, 98.5-101.0% (EP)
Sigma-Aldrich
Polybrene Infection / Transfection Reagent, A highly efficient method of gene transfer into mammalian cells leveraging infection with retroviral vectors.
Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, 1 mg/mL, clone M2, affinity isolated antibody, buffered aqueous solution (50% glycerol, 10 mM sodium phosphate, and 150 mM NaCl, pH 7.4)
Sigma-Aldrich
Anti-CSTA antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution