Skip to Content
Merck
  • Intracellular Ca(2+)-handling differs markedly between intact human muscle fibers and myotubes.

Intracellular Ca(2+)-handling differs markedly between intact human muscle fibers and myotubes.

Skeletal muscle (2015-08-25)
Karl Olsson, Arthur J Cheng, Seher Alam, Mamdoh Al-Ameri, Eric Rullman, Håkan Westerblad, Johanna T Lanner, Joseph D Bruton, Thomas Gustafsson
ABSTRACT

In skeletal muscle, intracellular Ca(2+) is an important regulator of contraction as well as gene expression and metabolic processes. Because of the difficulties to obtain intact human muscle fibers, human myotubes have been extensively employed for studies of Ca(2+)-dependent processes in human adult muscle. Despite this, it is unknown whether the Ca(2+)-handling properties of myotubes adequately represent those of adult muscle fibers. To enable a comparison of the Ca(2+)-handling properties of human muscle fibers and myotubes, we developed a model of dissected intact single muscle fibers obtained from human intercostal muscle biopsies. The intracellular Ca(2+)-handling of human muscle fibers was compared with that of myotubes generated by the differentiation of primary human myoblasts obtained from vastus lateralis muscle biopsies. The intact single muscle fibers all demonstrated strictly regulated cytosolic free [Ca(2+)] ([Ca(2+)]i) transients and force production upon electrical stimulation. In contrast, despite a more mature Ca(2+)-handling in myotubes than in myoblasts, myotubes lacked fundamental aspects of adult Ca(2+)-handling and did not contract. These functional differences were explained by discrepancies in the quantity and localization of Ca(2+)-handling proteins, as well as ultrastructural differences between muscle fibers and myotubes. Intact single muscle fibers that display strictly regulated [Ca(2+)]i transients and force production upon electrical stimulation can be obtained from human intercostal muscle biopsies. In contrast, human myotubes lack important aspects of adult Ca(2+)-handling and are thus an inappropriate model for human adult muscle when studying Ca(2+)-dependent processes, such as gene expression and metabolic processes.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC), free-flowing, Redi-Dri
Whatman® Mini-UniPrep® G2 standard septum, PVDF membrane, pore size 0.45 μm, clear vial, pack of 1000
Whatman® Mini-UniPrep® G2 standard septum, PVDF membrane, pore size 0.2 μm, amber vial, pack of 100
Whatman® Mini-UniPrep® G2 standard septum, PVDF membrane, pore size 0.2 μm, clear vial, pack of 1000
Whatman® Mini-UniPrep® G2 slit septum starter pack, supplied with single vial compressor, PVDF membrane, pore size 0.2 μm, clear vial, pack of 100
Whatman® Mini-UniPrep® G2 slit septum starter pack, supplied with single vial compressor, PVDF membrane, pore size 0.45 μm, clear vial, pack of 100
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Whatman® Mini-UniPrep® G2 standard septum starter pack, supplied with single vial compressor, PVDF membrane, pore size 0.45 μm, clear vial color, pack of 100
Whatman® Mini-UniPrep® G2 standard septum starter pack, supplied with single vial compressor, PVDF membrane, pore size 0.2 μm, amber vial color, pack of 100
Whatman® Mini-UniPrep® G2 standard septum, PVDF membrane, pore size 0.2 μm, clear vial color, pack of 100
Whatman® Mini-UniPrep® G2 standard septum starter pack, supplied with single vial compressor, PVDF membrane, pore size 0.2 μm, clear vial color, pack of 100
Whatman® Mini-UniPrep® G2 standard septum, PVDF membrane, pore size 0.45 μm, clear vial color, pack of 100
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
4′,6-Diamidino-2-phenylindole dihydrochloride, powder, BioReagent, suitable for cell culture, ≥98% (HPLC and TLC), suitable for fluorescence
Sigma-Aldrich
Insulin solution human, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
4′,6-Diamidino-2-phenylindole dihydrochloride, suitable for fluorescence, BioReagent, ≥95.0% (HPLC)
Sigma-Aldrich
4-Chloro-3-methylphenol, ≥98.0% (HPLC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
4-Chloro-3-methylphenol, 99%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90% ((Assay))
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Fluo-3, suitable for fluorescence, ~70%
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O