Skip to Content
Merck

Salt effects in electromembrane extraction.

Journal of chromatography. A (2014-05-06)
Knut Fredrik Seip, Henrik Jensen, Thanh Elisabeth Kieu, Astrid Gjelstad, Stig Pedersen-Bjergaard
ABSTRACT

Electromembrane extraction (EME) was performed on samples containing substantial amounts of NaCl to investigate how the presence of salts affected the recovery, repeatability, and membrane current in the extraction system. A group of 17 non-polar basic drugs with various physical chemical properties were used as model analytes. When EME was performed in a hollow fiber setup with a supported liquid membrane (SLM) comprised of 2-nitrophenyl octyl ether (NPOE), a substantial reduction in recovery was seen for eight of the substances when 2.5% (w/v) NaCl was present. No correlation between this loss and the physical chemical properties of these substances was seen. The recovery loss was hypothesized to be caused by ion pairing in the SLM, and a mathematical model for the extraction recovery in the presence of salts was made according to the experimental observations. Some variations to the EME system reduced this recovery loss, such as changing the SLM solvent from NPOE to 6-undecanone, or by using a different EME setup with more favorable volume ratios. This was in line with the ion pairing hypothesis and the mathematical model. This thorough investigation of how salts affect EME improves the theoretical understanding of the extraction process, and can contribute to the future development and optimization of the technique.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Imidazole, ReagentPlus®, 99%, Redi-Dri, free-flowing
Sigma-Aldrich
Sodium hydroxide, puriss. p.a., ACS reagent, reag. Ph. Eur., K ≤0.02%, ≥98%, pellets
Sigma-Aldrich
Sodium hydroxide, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Sodium hydroxide, reagent grade, 97%, flakes
Sigma-Aldrich
Sodium sulfate, ACS reagent, ≥99.0%, anhydrous, powder
Sigma-Aldrich
Sodium hydroxide solution, 50% in H2O
Sigma-Aldrich
Sodium hydroxide, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
Sodium hydroxide, beads, 16-60 mesh, reagent grade, 97%
Ondansetron impurity E, European Pharmacopoeia (EP) Reference Standard
Supelco
Residual Solvent - Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Haloperidol, United States Pharmacopeia (USP) Reference Standard
USP
Imidazole, United States Pharmacopeia (USP) Reference Standard
Supelco
Sodium hydroxide concentrate, 0.1 M NaOH in water (0.1N), Eluent concentrate for IC
Imidazole, European Pharmacopoeia (EP) Reference Standard
Loperamide hydrochloride, European Pharmacopoeia (EP) Reference Standard
Clemastine fumarate, European Pharmacopoeia (EP) Reference Standard
Supelco
Loperamide hydrochloride, VETRANAL®, analytical standard
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Phosphoric acid solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Phosphoric acid solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 3 mm × 8 in.
Supelco
Loperamide hydrochloride, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
(±)-Verapamil hydrochloride, Pharmaceutical Secondary Standard; Certified Reference Material
Haloperidol for peak identification, European Pharmacopoeia (EP) Reference Standard
Supelco
Potassium Chloride, Pharmaceutical Secondary Standard; Certified Reference Material
Nortriptyline for system suitability, European Pharmacopoeia (EP) Reference Standard
Haloperidol for system suitability, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Sodium chloride solution, 0.85%
Haloperidol, European Pharmacopoeia (EP) Reference Standard
USP
Nortriptyline hydrochloride, United States Pharmacopeia (USP) Reference Standard