Accéder au contenu
Merck

Microbial colonization is required for normal neurobehavioral development in zebrafish.

Scientific reports (2017-09-13)
Drake Phelps, Nichole E Brinkman, Scott P Keely, Emily M Anneken, Tara R Catron, Doris Betancourt, Charles E Wood, Scott T Espenschied, John F Rawls, Tamara Tal
RÉSUMÉ

Changes in resident microbiota may have wide-ranging effects on human health. We investigated whether early life microbial disruption alters neurodevelopment and behavior in larval zebrafish. Conventionally colonized, axenic, and axenic larvae colonized at 1 day post fertilization (dpf) were evaluated using a standard locomotor assay. At 10 dpf, axenic zebrafish exhibited hyperactivity compared to conventionalized and conventionally colonized controls. Impairment of host colonization using antibiotics also caused hyperactivity in conventionally colonized larvae. To determine whether there is a developmental requirement for microbial colonization, axenic embryos were serially colonized on 1, 3, 6, or 9 dpf and evaluated on 10 dpf. Normal activity levels were observed in axenic larvae colonized on 1-6 dpf, but not on 9 dpf. Colonization of axenic embryos at 1 dpf with individual bacterial species Aeromonas veronii or Vibrio cholerae was sufficient to block locomotor hyperactivity at 10 dpf. Exposure to heat-killed bacteria or microbe-associated molecular patterns pam3CSK4 or Poly(I:C) was not sufficient to block hyperactivity in axenic larvae. These data show that microbial colonization during early life is required for normal neurobehavioral development and support the concept that antibiotics and other environmental chemicals may exert neurobehavioral effects via disruption of host-associated microbial communities.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Roche
Système pour PCR FastStart High Fidelity, dNTPack
Sigma-Aldrich
Poly(vinylpyrrolidone)–Iodine complex
Sigma-Aldrich
Transcreener® UDP2 TR-FRET Assay