Accéder au contenu
Merck
  • Common variants of chemokine receptor gene CXCR3 and its ligands CXCL10 and CXCL11 associated with vascular permeability of dengue infection in peninsular Malaysia.

Common variants of chemokine receptor gene CXCR3 and its ligands CXCL10 and CXCL11 associated with vascular permeability of dengue infection in peninsular Malaysia.

Human immunology (2015-04-11)
B P Hoh, H Umi-Shakina, Z Zuraihan, M Z Zaiharina, S Rafidah-Hanim, M Mahiran, N Y Nik Khairudin, L H Sim Benedict, Z Masliza, K C Lee Christopher, A B Sazaly
RÉSUMÉ

Dengue causes significantly more human disease than any other arboviruses. It causes a spectrum of illness, ranging from mild self-limited fever, to severe and fatal dengue hemorrhagic fever, as evidenced by vascular leakage and multifactorial hemostatic abnormalities. There is no specific treatment available till date. Evidence shows that chemokines CXCL10, CXCL11 and their receptor CXCR3 are involved in severity of dengue, but their genetic association with the susceptibility of vascular leakage during dengue infection has not been reported. We genotyped 14 common variants of these candidate genes in 176 patients infected with dengue. rs4859584 and rs8878 (CXCL10) were significantly associated with vascular permeability of dengue infection (P<0.05); while variants of CXCL11 showed moderate significance of association (P=0.0527). Haplotype blocks were constructed for genes CXCL10 and CXCL11 (5 and 7 common variants respectively). Haplotype association tests performed revealed that, "CCCCA" of gene CXCL10 and "AGTTTAC" of CXCL11 were found to be significantly associated with vascular leakage (P=0.0154 and 0.0366 respectively). In summary, our association study further strengthens the evidence of the involvement of CXCL10 and CXCL11 in the pathogenesis of dengue infection.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Interferon-Inducible T Cell α Chemoattractant human, ≥97% (SDS-PAGE), recombinant, expressed in E. coli, lyophilized powder, suitable for cell culture