Accéder au contenu
Merck
  • Methylation and its role in the disposition of tanshinol, a cardiovascular carboxylic catechol from Salvia miltiorrhiza roots (Danshen).

Methylation and its role in the disposition of tanshinol, a cardiovascular carboxylic catechol from Salvia miltiorrhiza roots (Danshen).

Acta pharmacologica Sinica (2015-04-22)
Dan-dan Tian, Wei-wei Jia, Xin-wei Liu, Dan-dan Wang, Jun-hua Liu, Jia-jia Dong, Li Li, Fei-fei Du, Fang Xu, Feng-qing Wang, Yan Sun, Yu-xing Huang, Mei-juan Li, Li-hong Hu, Yan Zhu, Xiu-mei Gao, Chuan Li, Jun-ling Yang
RÉSUMÉ

Tanshinol is an important catechol in the antianginal herb Salvia miltiorrhiza roots (Danshen). This study aimed to characterize tanshinol methylation. Metabolites of tanshinol were analyzed by liquid chromatography/mass spectrometry. Metabolism was assessed in vitro with rat and human enzymes. The major metabolites were synthesized for studying their interactions with drug metabolizing enzymes and transporters and their vasodilatory properties. Dose-related tanshinol methylation and its influences on tanshinol pharmacokinetics were also studied in rats. Methylation, preferentially in the 3-hydroxyl group, was the major metabolic pathway of tanshinol. In rats, tanshinol also underwent considerable 3-O-sulfation, which appeared to be poor in human liver. These metabolites were mainly eliminated via renal excretion, which involved tubular secretion mainly by organic anion transporter (OAT) 1. The methylated metabolites had no vasodilatory activity. Entacapone-impaired methylation did not considerably increase systemic exposure to tanshinol in rats. The saturation of tanshinol methylation in rat liver could be predicted from the Michaelis constant of tanshinol for catechol-O-methyltransferase (COMT). Tanshinol had low affinity for human COMT and OATs; its methylated metabolites also had low affinity for the transporters. Tanshinol and its major human metabolite (3-O-methyltanshinol) exhibited negligible inhibitory activities against human cytochrome P450 enzymes, organic anion transporting polypeptides 1B1/1B3, multidrug resistance protein 1, multidrug resistance-associated protein 2, and breast cancer resistance protein. Tanshinol is mainly metabolized via methylation. Tanshinol and its major human metabolite have low potential for pharmacokinetic interactions with synthetic antianginal agents. This study will help define the risk of hyperhomocysteinemia related to tanshinol methylation.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Trizma® base, Primary Standard and Buffer, ≥99.9% (titration), crystalline
Sigma-Aldrich
Trizma® base, BioPerformance Certified, meets EP, USP testing specifications, suitable for cell culture, ≥99.9% (titration)
Sigma-Aldrich
Chlorure de sodium, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Chlorure de sodium solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Chlorure de sodium solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Chlorure de sodium, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Tromethamine, meets USP testing specifications
Sigma-Aldrich
Sigma 7-9®, ≥99% (titration), crystalline
Sigma-Aldrich
Trizma® base, BioUltra, for molecular biology, ≥99.8% (T)
SAFC
Chlorure de sodium solution, 5 M
Sigma-Aldrich
Trizma® base, ≥99.0% (T)
SAFC
Methotrexate
Sigma-Aldrich
Chlorure d′acétylcholine, ≥99% (TLC)
Sigma-Aldrich
sulfate de magnésium, BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Indomethacin, 98.5-100.5% (in accordance with EP)
Sigma-Aldrich
Chlorure de sodium solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Chlorure de sodium, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Trizma® base, BioXtra, pH 10.5-12.0 (1 M in H2O), ≥99.9% (titration)
Sigma-Aldrich
Chlorure de sodium, 99.999% trace metals basis
Sigma-Aldrich
Chlorure de sodium, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Tris(hydroxyméthyl)aminométhane, ACS reagent, ≥99.8%
Sigma-Aldrich
Magnesium sulfate solution, for molecular biology, 1.00 M±0.04 M
Sigma-Aldrich
Trizma® base, ≥99.9% (titration), crystalline
Sigma-Aldrich
(±)-Verapamil hydrochloride, ≥99% (titration), powder
Sigma-Aldrich
Uridine 5′-diphosphoglucuronic acid ammonium salt, 98-100%
Sigma-Aldrich
Magnesium sulfate solution, BioUltra, for molecular biology
Sigma-Aldrich
Chlorure de sodium, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Chlorure d′acétylcholine, suitable for cell culture
Sigma-Aldrich
Trizma® base, anhydrous, free-flowing, Redi-Dri, ≥99.9%
Sigma-Aldrich
Trizma® base, puriss. p.a., ≥99.7% (T)