Accéder au contenu
Merck
  • Efficient metabolic exchange and electron transfer within a syntrophic trichloroethene-degrading coculture of Dehalococcoides mccartyi 195 and Syntrophomonas wolfei.

Efficient metabolic exchange and electron transfer within a syntrophic trichloroethene-degrading coculture of Dehalococcoides mccartyi 195 and Syntrophomonas wolfei.

Applied and environmental microbiology (2015-01-13)
Xinwei Mao, Benoit Stenuit, Alexandra Polasko, Lisa Alvarez-Cohen
RÉSUMÉ

Dehalococcoides mccartyi 195 (strain 195) and Syntrophomonas wolfei were grown in a sustainable syntrophic coculture using butyrate as an electron donor and carbon source and trichloroethene (TCE) as an electron acceptor. The maximum dechlorination rate (9.9 ± 0.1 μmol day(-1)) and cell yield [(1.1 ± 0.3) × 10(8) cells μmol(-1) Cl(-)] of strain 195 maintained in coculture were, respectively, 2.6 and 1.6 times higher than those measured in the pure culture. The strain 195 cell concentration was about 16 times higher than that of S. wolfei in the coculture. Aqueous H2 concentrations ranged from 24 to 180 nM during dechlorination and increased to 350 ± 20 nM when TCE was depleted, resulting in cessation of butyrate fermentation by S. wolfei with a theoretical Gibbs free energy of -13.7 ± 0.2 kJ mol(-1). Carbon monoxide in the coculture was around 0.06 μmol per bottle, which was lower than that observed for strain 195 in isolation. The minimum H2 threshold value for TCE dechlorination by strain 195 in the coculture was 0.6 ± 0.1 nM. Cell aggregates during syntrophic growth were observed by scanning electron microscopy. The interspecies distances to achieve H2 fluxes required to support the measured dechlorination rates were predicted using Fick's law and demonstrated the need for aggregation. Filamentous appendages and extracellular polymeric substance (EPS)-like structures were present in the intercellular spaces. The transcriptome of strain 195 during exponential growth in the coculture indicated increased ATP-binding cassette transporter activities compared to the pure culture, while the membrane-bound energy metabolism related genes were expressed at stable levels.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Trichloroethylene, ACS reagent, ≥99.5%
Sigma-Aldrich
Phénol solution, BioReagent, Equilibrated with 10 mM Tris HCl, pH 8.0, 1 mM EDTA, for molecular biology
Sigma-Aldrich
Phénol solution, BioReagent, Saturated with 0.01 M citrate buffer, pH 4.3 ± 0.2, for molecular biology
Sigma-Aldrich
Phénol, ≥99%
USP
Phénol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Phénol, natural, 97%, FG
Sigma-Aldrich
Phénol, BioUltra, for molecular biology, TE-saturated, ~73% (T)
Supelco
Phénol solution, certified reference material, 500 μg/mL in methanol
Sigma-Aldrich
Phénol, puriss. p.a., ACS reagent, reag. Ph. Eur., 99.0-100.5%
Supelco
Phénol solution, 5000 μg/mL in methanol, certified reference material
Sigma-Aldrich
Phénol solution, ≥89.0%
Sigma-Aldrich
Phénol, for molecular biology
Supelco
Phénol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Phénol, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
Phénol, puriss., ≥99.5% (GC), meets analytical specification of Ph. Eur., BP, USP, crystalline (detached)
Supelco
Trichloroethylene, analytical standard, stabilized with 30 – 50 ppm Diisopropylamine
Sigma-Aldrich
Phénol, contains hypophosphorous as stabilizer, loose crystals, ACS reagent, ≥99.0%
Sigma-Aldrich
Phénol, unstabilized, ReagentPlus®, ≥99%
Sigma-Aldrich
Phénol, ≥96.0% (calc. on dry substance, T)
Supelco
Phénol, PESTANAL®, analytical standard
Supelco
Trichloroethylene, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Trichloroethylene, anhydrous, contains 40 ppm diisopropylamine as stabilizer, ≥99%
Sigma-Aldrich
Phénol, unstabilized, purified by redistillation, ≥99%
Sigma-Aldrich
Phénol, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.5-100.5% (GC)
Supelco
Phénol solution, 100 μg/mL in acetonitrile, PESTANAL®, analytical standard
Sigma-Aldrich
Phénol, BioUltra, for molecular biology, ≥99.5% (GC)