Accéder au contenu
Merck

Potential of 99mTc-LDLs labeled by two different methods for scintigraphic detection of experimental atherosclerosis in rabbits.

Arteriosclerosis and thrombosis : a journal of vascular biology (1993-01-01)
D E Atsma, R I Feitsma, J Camps, F M van't Hooft, E E van der Wall, W Nieuwenhuizen, E K Pauwels
RÉSUMÉ

In this study we evaluated two different 99mTc-labeling techniques to produce 99mTc-low density lipoprotein (99mTc-LDL) suitable for the scintigraphic delineation of experimental atherosclerotic lesions. The two methods are 1) a procedure that uses stannous chloride and sodium borohydride (borohydride method) and 2) a procedure that uses sodium dithionite as a reducing agent and that has been successfully applied in previous scintigraphic atherosclerosis detection (dithionite method). 99mTc-LDL produced by either method was injected into New Zealand White rabbits with diet-induced atherosclerotic plaques and in control rabbits. Scintigraphic images were taken 10 minutes (t = 0) and 1, 4, 8, 16, and 24 hours after injection. Clearance of plasma radioactivity was also studied. Stability of the 99mTc-LDL complex in the circulation was examined by size exclusion chromatography of plasma samples. After scintigraphy, the animals were killed, and the biodistribution of radioactivity was determined. The thoracic and abdominal aortas appeared in scintigraphic images to accumulate 99mTc over their entire length with either 99mTc-LDL preparation. The sparse imaging of focal atherosclerosis was found to be due to the fact that the aortas were covered with confluent atherosclerotic lesions. Scintigraphic image analysis showed that 24 hours after injection, the accumulated radioactivity in the abdominal aorta of the atherosclerotic rabbits was 57% and 54%, respectively, of the accumulated radioactivity in the abdominal aorta at t = 0 when the borohydride versus the dithionite method was used. In the control animals this value was 25% for the dithionite method, whereas in the borohydride method the aortas could not be detected in the images at t = 24 hours.(ABSTRACT TRUNCATED AT 250 WORDS)

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Potassium borohydride, ≥97%
Sigma-Aldrich
Potassium borohydride, 99.9% trace metals basis
Sigma-Aldrich
Potassium borohydride, purum, ≥97.0% (RT)