Accéder au contenu
Merck

Cadmium(II) cysteine complexes in the solid state: a multispectroscopic study.

Inorganic chemistry (2009-04-09)
Farideh Jalilehvand, Vicky Mah, Bonnie O Leung, János Mink, Guy M Bernard, László Hajba
RÉSUMÉ

Cadmium(II) cysteinate compounds have recently been recognized to provide an environmentally friendly route for the production of CdS nanoparticles, used in semiconductors. In this article, we have studied the coordination for two cadmium(II) cysteinates, Cd(HCys)(2) x H(2)O (1) and {Cd(HCys)(2) x H(2)O}(2) x H(3)O(+)ClO(4)(-) (2), by means of vibrational (Raman and IR absorption), solid-state NMR ((113)Cd and (13)C), and Cd K- and L(3)-edge X-ray absorption spectroscopy. Indistinguishable Cd K-edge extended X-ray absorption fine structure (EXAFS) and Cd L(3)-edge X-ray absorption near edge structure (XANES) spectra were obtained for the two compounds, showing similar local structure around the cadmium(II) ions. The vibrational spectra show that the cysteine amine group is protonated (NH(3)(+)) and not involved in bonding. The (113)Cd solid-state cross-polarization magic angle spinning NMR spectra showed a broad signal in the approximately 500-700 ppm range, with the peak maximum at about 650 ppm, indicating three to four coordinated thiolate groups. Careful analyses of low-frequency Raman and far-IR spectra revealed bridging and terminal Cd-S vibrational bands. The average Cd-S distance of 2.52 +/- 0.02 A that constantly emerged from least-squares curve-fitting of the EXAFS spectra is consistent with CdS(4) and CdS(3)O coordination. Both structural models yielded reasonable values for the refined parameters, with a slightly better fit for the CdS(3)O configuration, for which the Cd-O distance of 2.27 +/- 0.04 A was obtained. The Cd L(3)-edge XANES spectra of 1 and 2 resembled that of the CdS(3)O model compound and showed that the coordination around Cd(II) ions in 1 and 2 cannot be exclusively CdS(4). The small separation of 176 cm(-1) between the infrared symmetric and antisymmetric COO(-) stretching modes indicates monodentate or strongly asymmetrical bidentate coordination of a cysteine carboxylate group in the CdS(3)O units. The combined results are consistent with a "cyclic/cage" type of structure for both the amorphous solids 1 and 2, composed of CdS(4) and CdS(3)O units with single thiolate (Cd-S-Cd) bridges, although a minor amount of cadmium(II) sites with CdS(3)O(2-3) and CdS(4)O coordination geometries cannot be ruled out.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Cadmium acetate dihydrate, reagent grade, 98%
Sigma-Aldrich
Cadmium(II) acetate, anhydrous, 99.995%
Sigma-Aldrich
Cadmium acetate dihydrate, purum p.a., ≥98.0% (KT)
Cadmium(II) acetate, SAFC Hitech®, anhydrous, 99.995%