Accéder au contenu
Merck

Hyponitrite radical, a stable adduct of nitric oxide and nitroxyl.

Journal of the American Chemical Society (2004-01-22)
Gregory A Poskrebyshev, Vladimir Shafirovich, Sergei V Lymar
RÉSUMÉ

All major properties of the aqueous hyponitrite radicals (ONNO- and ONNOH), the adducts of nitric oxide (NO) and nitroxyl (3NO- and 1HNO), are revised. In this work, the radicals are produced by oxidation of various hyponitrite species in the 2-14 pH range with the OH, N3, or SO4- radicals. The estimated rate constants with OH are 4 x 10(7), 4.2 x 10(9), and 8.8 x 10(9) M(-1) s(-1) for oxidations of HONNOH, HONNO-, and ONNO2-, respectively. The rate constants for N3 + ONNO2- and SO4- + HONNO- are 1.1 x 10(9) and 6.4 x 10(8) M(-1) s(-1), respectively. The ONNO- radical exhibits a strong characteristic absorption spectrum with maxima at 280 and 420 nm (epsilon280 = 7.6 x 10(3) and epsilon420 = 1.2 x 10(3) M(-1) cm(-1)). This spectrum differs drastically from those reported, suggesting the radical misassignment in prior work. The ONNOH radical is weakly acidic; its pKa of 5.5 is obtained from the spectral changes with pH. Both ONNO- and ONNOH are shown to be over 3 orders of magnitude more stable with respect to elimination of NO than it has been suggested previously. The aqueous thermodynamic properties of ONNO- and ONNOH radicals are derived by means of the gas-phase ab initio calculations, justified estimates for ONNOH hydration, and its pKa. The radicals are found to be both strongly oxidizing, E degrees (ONNO-/ONNO2-) = 0.96 V and E degrees (ONNOH, H+/HONNOH) = 1.75 V, and moderately reducing, E degrees (2NO/ONNO-) = -0.38 V and E degrees (2NO, H+/ONNOH) = -0.06 V, all vs NHE. Collectively, these properties make the hyponitrite radical an important intermediate in the aqueous redox chemistry leading to or originating from nitric oxide.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Sodium trans-hyponitrite hydrate