Accéder au contenu
Merck

Purification, enzymatic characterization, and inhibition of the Z-farnesyl diphosphate synthase from Mycobacterium tuberculosis.

The Journal of biological chemistry (2001-01-21)
M C Schulbach, S Mahapatra, M Macchia, S Barontini, C Papi, F Minutolo, S Bertini, P J Brennan, D C Crick
RÉSUMÉ

We have recently shown that open reading frame Rv1086 of the Mycobacterium tuberculosis H37Rv genome sequence encodes a unique isoprenyl diphosphate synthase. The product of this enzyme, omega,E,Z-farnesyl diphosphate, is an intermediate for the synthesis of decaprenyl phosphate, which has a central role in the biosynthesis of most features of the mycobacterial cell wall, including peptidoglycan, arabinan, linker unit galactan, and lipoarabinomannan. We have now purified Z-farnesyl diphosphate synthase to near homogeneity using a novel mycobacterial expression system. Z-Farnesyl diphosphate synthase catalyzed the addition of isopentenyl diphosphate to omega,E-geranyl diphosphate or omega,Z-neryl diphosphate yielding omega,E,Z-farnesyl diphosphate and omega,Z,Z-farnesyl diphosphate, respectively. The enzyme has an absolute requirement for a divalent cation, an optimal pH range of 7-8, and K(m) values of 124 micrometer for isopentenyl diphosphate, 38 micrometer for geranyl diphosphate, and 16 micrometer for neryl diphosphate. Inhibitors of the Z-farnesyl diphosphate synthase were designed and chemically synthesized as stable analogs of omega,E-geranyl diphosphate in which the labile diphosphate moiety was replaced with stable moieties. Studies with these compounds revealed that the active site of Z-farnesyl diphosphate synthase differs substantially from E-farnesyl diphosphate synthase from pig brain (Sus scrofa).

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Neryl monophosphate lithium salt, ≥95.0% (TLC)