Accéder au contenu
Merck

Identification, characterization and application of a new peptide against anterior gradient homolog 2 (AGR2).

Oncotarget (2018-06-26)
Carolina Garri, Shannon Howell, Katrin Tiemann, Aleczandria Tiffany, Farzad Jalali-Yazdi, Mario M Alba, Jonathan E Katz, Terry T Takahashi, Ralf Landgraf, Mitchell E Gross, Richard W Roberts, Kian Kani
RÉSUMÉ

The cancer-associated protein Anterior Gradient 2 (AGR2) has been described, predominantly in adenocarcinomas. Increased levels of extracellular AGR2 (eAGR2) have been correlated with poor prognosis in cancer patients, making it a potential biomarker. Additionally, neutralizing AGR2 antibodies showed preclinical effectiveness in murine cancer models suggesting eAGR2 may be a therapeutic target. We set out to identify a peptide by mRNA display that would serve as a theranostic tool targeting AGR2. This method enables the selection of peptides from a complex (>1011) library and incorporates a protease incubation step that filters the selection for serum stable peptides. We performed six successive rounds of enrichment using a 10-amino acid mRNA display library and identified several AGR2 binding peptides. One of these peptides (H10), demonstrated high affinity binding to AGR2 with a binding constant (KD) of 6.4 nM. We developed an AGR2 ELISA with the H10 peptide as the capture reagent. Our H10-based ELISA detected eAGR2 from cancer cell spent media with a detection limit of (20-50 ng/ml). Furthermore, we investigated the therapeutic utility of H10 and discovered that it inhibited cell viability at IC50 (9-12 μmoles/L) in cancer cell lines. We also determined that 10 μg/ml of H10 was sufficient to inhibit cancer cell migration in breast and prostate cancer cell lines. A control peptide did not show any appreciable activity in these cells. The H10 peptide showed promise as both a novel diagnostic and a potential therapeutic peptide.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
α-Chymotrypsin−Agarose from bovine pancreas, lyophilized powder, 2,000-3,500 units/g agarose (One ml gel will yield 65-120 units)