Accéder au contenu
Merck

BNIP3 phosphorylation by JNK1/2 promotes mitophagy via enhancing its stability under hypoxia.

Cell death & disease (2022-11-18)
Yun-Ling He, Jian Li, Sheng-Hui Gong, Xiang Cheng, Ming Zhao, Yan Cao, Tong Zhao, Yong-Qi Zhao, Ming Fan, Hai-Tao Wu, Ling-Ling Zhu, Li-Ying Wu
RÉSUMÉ

Mitophagy is an important metabolic mechanism that modulates mitochondrial quality and quantity by selectively removing damaged or unwanted mitochondria. BNIP3 (BCL2/adenovirus e1B 19 kDa protein interacting protein 3), a mitochondrial outer membrane protein, is a mitophagy receptor that mediates mitophagy under various stresses, particularly hypoxia, since BNIP3 is a hypoxia-responsive protein. However, the underlying mechanisms that regulate BNIP3 and thus mediate mitophagy under hypoxic conditions remain elusive. Here, we demonstrate that in hypoxia JNK1/2 (c-Jun N-terminal kinase 1/2) phosphorylates BNIP3 at Ser 60/Thr 66, which hampers proteasomal degradation of BNIP3 and drives mitophagy by facilitating the direct binding of BNIP3 to LC3 (microtubule-associated protein 1 light chain 3), while PP1/2A (protein phosphatase 1/2A) represses mitophagy by dephosphorylating BNIP3 and triggering its proteasomal degradation. These findings reveal the intrinsic mechanisms cells use to regulate mitophagy via the JNK1/2-BNIP3 pathway in response to hypoxia. Thus, the JNK1/2-BNIP3 signaling pathway strongly links mitophagy to hypoxia and may be a promising therapeutic target for hypoxia-related diseases.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
MG-132, en solution prête à l′emploi, ≥90% (HPLC)
Sigma-Aldrich
Anticorps monoclonal anti-β-actine antibody produced in mouse, clone AC-74, ascites fluid
Sigma-Aldrich
Anti-LC3B antibody produced in rabbit, ~1 mg/mL, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
3-Methyladenine, autophagy inhibitor
Sigma-Aldrich
Okadaic acid ammonium salt from Prorocentrum concavum, ≥90% (HPLC), solid
Sigma-Aldrich
TBB, ≥98% (HPLC), solid