Accéder au contenu
Merck
  • Synthesis and Photovoltaics of Novel 2,3,4,5-Tetrathienylthiophene-co-poly(3-hexylthiophene-2,5-diyl) Donor Polymer for Organic Solar Cell.

Synthesis and Photovoltaics of Novel 2,3,4,5-Tetrathienylthiophene-co-poly(3-hexylthiophene-2,5-diyl) Donor Polymer for Organic Solar Cell.

Polymers (2020-12-31)
Morongwa E Ramoroka, Siyabonga B Mdluli, Vivian S John-Denk, Kwena D Modibane, Christopher J Arendse, Emmanuel I Iwuoha
RÉSUMÉ

This report focuses on the synthesis of novel 2,3,4,5-tetrathienylthiophene-co-poly(3-hexylthiophene-2,5-diyl) (TTT-co-P3HT) as a donor material for organic solar cells (OSCs). The properties of the synthesized TTT-co-P3HT were compared with those of poly(3-hexylthiophene-2,5-diyl (P3HT). The structure of TTT-co-P3HT was studied using nuclear magnetic resonance spectroscopy (NMR) and Fourier-transform infrared spectroscopy (FTIR). It was seen that TTT-co-P3HT possessed a broader electrochemical and optical band-gap as compared to P3HT. Cyclic voltammetry (CV) was used to determine lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy gaps of TTT-co-P3HT and P3HT were found to be 2.19 and 1.97 eV, respectively. Photoluminescence revealed that TTT-co-P3HT:PC71BM have insufficient electron/hole separation and charge transfer when compared to P3HT:PC71BM. All devices were fabricated outside a glovebox. Power conversion efficiency (PCE) of 1.15% was obtained for P3HT:PC71BM device and 0.14% was obtained for TTT-co-P3HT:PC71BM device. Further studies were done on fabricated OSCs during this work using electrochemical methods. The studies revealed that the presence of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on the surface of indium tin oxide (ITO) causes a reduction in cyclic voltammogram oxidation/reduction peak current and increases the charge transfer resistance in comparison with a bare ITO. We also examined the ITO/PEDOT:PSS electrode coated with TTT-co-P3HT:PC71BM, TTT-co-P3HT:PC71BM/ZnO, P3HT:PC71BM and P3HT:PC71BM/ZnO. The study revealed that PEDOT:PSS does not completely block electrons from active layer to reach the ITO electrode.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Poly(3-hexylthiophene-2,5-diyl), regioregular, average Mw 20,000-45,000