Accéder au contenu
Merck

Distinct fission signatures predict mitochondrial degradation or biogenesis.

Nature (2021-05-07)
Tatjana Kleele, Timo Rey, Julius Winter, Sofia Zaganelli, Dora Mahecic, Hélène Perreten Lambert, Francesco Paolo Ruberto, Mohamed Nemir, Timothy Wai, Thierry Pedrazzini, Suliana Manley
RÉSUMÉ

Mitochondrial fission is a highly regulated process that, when disrupted, can alter metabolism, proliferation and apoptosis1-3. Dysregulation has been linked to neurodegeneration3,4, cardiovascular disease3 and cancer5. Key components of the fission machinery include the endoplasmic reticulum6 and actin7, which initiate constriction before dynamin-related protein 1 (DRP1)8 binds to the outer mitochondrial membrane via adaptor proteins9-11, to drive scission12. In the mitochondrial life cycle, fission enables both biogenesis of new mitochondria and clearance of dysfunctional mitochondria through mitophagy1,13. Current models of fission regulation cannot explain how those dual fates are decided. However, uncovering fate determinants is challenging, as fission is unpredictable, and mitochondrial morphology is heterogeneous, with ultrastructural features that are below the diffraction limit. Here, we used live-cell structured illumination microscopy to capture mitochondrial dynamics. By analysing hundreds of fissions in African green monkey Cos-7 cells and mouse cardiomyocytes, we discovered two functionally and mechanistically distinct types of fission. Division at the periphery enables damaged material to be shed into smaller mitochondria destined for mitophagy, whereas division at the midzone leads to the proliferation of mitochondria. Both types are mediated by DRP1, but endoplasmic reticulum- and actin-mediated pre-constriction and the adaptor MFF govern only midzone fission. Peripheral fission is preceded by lysosomal contact and is regulated by the mitochondrial outer membrane protein FIS1. These distinct molecular mechanisms explain how cells independently regulate fission, leading to distinct mitochondrial fates.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Roche
Cocktail d'inhibiteurs de protéases sans EDTA Mini cOmplete, Protease Inhibitor Cocktail Tablets provided in a glass vial, Tablets provided in a glass vial
Roche
Anti-Bromodeoxyuridine, from mouse IgG1 (clone: BMC9318)
Sigma-Aldrich
Anti-INF2 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution