Accéder au contenu
Merck

Highly Stable Passive Wireless Sensor for Protease Activity Based on Fatty Acid-Coupled Gelatin Composite Films.

Analytical chemistry (2020-09-01)
Palraj Kalimuthu, Juan F Gonzalez-Martinez, Tautgirdas Ruzgas, Javier Sotres
RÉSUMÉ

Proteases are often used as biomarkers of many pathologies as well as of microbial contamination and infection. Therefore, extensive efforts are devoted to the development of protease sensors. Some applications would benefit from wireless monitoring of proteolytic activity at minimal cost, e.g., sensors embedded in care products like wound dressings and diapers to track wound and urinary infections. Passive (batteryless) and chipless transponders stand out among wireless sensing technologies when low cost is a requirement. Here, we developed and extensively characterized a composite material that is biodegradable but still highly stable in aqueous media, whose proteolytic degradation could be used in these wireless transponders as a transduction mechanism of proteolytic activity. This composite material consisted of a cross-linked gelatin network with incorporated caprylic acid. The digestion of the composite when exposed to proteases results in a change of its resistivity, a quantity that can be wirelessly monitored by coupling the composite to an inductor-capacitor resonator, i.e., an antenna. We experimentally proved this wireless sensor concept by monitoring the presence of a variety of proteases in aqueous media. Moreover, we also showed that detection time follows a relationship with protease concentration, which enables quantification possibilities for practical applications.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Gelatin from porcine skin, gel strength 300, Type A
Sigma-Aldrich
Octanoic acid, ≥98%
Sigma-Aldrich
Trypsine from porcine pancreas, lyophilized powder, Type II-S, 1,000-2,000 units/mg dry solid
Sigma-Aldrich
Protéinase K from Tritirachium album, lyophilized powder, BioUltra, ≥30 units/mg protein, for molecular biology
Sigma-Aldrich
Proteinase from Aspergillus melleus, Type XXIII, ≥3 units/mg solid