Accéder au contenu
Merck

Valproic acid-exposed astrocytes impair inhibitory synapse formation and function.

Scientific reports (2021-01-10)
Kotomi Takeda, Takuya Watanabe, Kohei Oyabu, Shuntaro Tsukamoto, Yuki Oba, Takafumi Nakano, Kaori Kubota, Shutaro Katsurabayashi, Katsunori Iwasaki
RÉSUMÉ

Valproic acid (VPA) is widely prescribed to treat epilepsy. Maternal VPA use is, however, clinically restricted because of the severe risk that VPA may cause neurodevelopmental disorders in offspring, such as autism spectrum disorder. Understanding the negative action of VPA may help to prevent VPA-induced neurodevelopmental disorders. Astrocytes play a vital role in neurodevelopment and synapse function; however, the impact of VPA on astrocyte involvement in neurodevelopment and synapse function has not been examined. In this study, we examined whether exposure of cultured astrocytes to VPA alters neuronal morphology and synapse function of co-cultured neurons. We show that synaptic transmission by inhibitory neurons was small because VPA-exposed astrocytes reduced the number of inhibitory synapses. However, synaptic transmission by excitatory neurons and the number of excitatory synapses were normal with VPA-exposed astrocytes. VPA-exposed astrocytes did not affect the morphology of inhibitory neurons. These data indicate that VPA-exposed astrocytes impair synaptogenesis specifically of inhibitory neurons. Our results indicate that maternal use of VPA would affect not only neurons but also astrocytes and would result in perturbed astrocyte-mediated neurodevelopment.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anti-Mouse IgG (H+L), CF 488A antibody produced in goat, ~2 mg/mL, affinity isolated antibody