Accéder au contenu
Merck
  • Ultrasound-Mediated Gemcitabine Delivery Reduces the Normal-Tissue Toxicity of Chemoradiation Therapy in a Muscle-Invasive Bladder Cancer Model.

Ultrasound-Mediated Gemcitabine Delivery Reduces the Normal-Tissue Toxicity of Chemoradiation Therapy in a Muscle-Invasive Bladder Cancer Model.

International journal of radiation oncology, biology, physics (2021-03-15)
Jia-Ling Ruan, Richard J Browning, Yesna O Yildiz, Michael Gray, Luca Bau, Sukanta Kamila, James Thompson, Amy Elliott, Sean Smart, Anthony P McHale, John F Callan, Borivoj Vojnovic, Eleanor Stride, Anne E Kiltie
RÉSUMÉ

Chemoradiation therapy is the standard of care in muscle-invasive bladder cancer (MIBC). Although agents such as gemcitabine can enhance tumor radiosensitivity, their side effects can limit patient eligibility and treatment efficacy. This study investigates ultrasound and microbubbles for targeting gemcitabine delivery to reduce normal-tissue toxicity in a murine orthotopic MIBC model. CD1-nude mice were injected orthotopically with RT112 bladder tumor cells. Conventional chemoradiation involved injecting gemcitabine (10 mg/kg) before 6 Gy targeted irradiation of the bladder area using the Small Animal Radiation Research Platform (SARRP). Ultrasound-mediated gemcitabine delivery (10 mg/kg gemcitabine) involved either coadministration of microbubbles with gemcitabine or conjugating gemcitabine onto microbubbles followed by exposure to ultrasound (1.1 MHz center frequency, 1 MPa peak negative pressure, 1% duty cycle, and 0.5 Hz pulse repetition frequency) before SARRP irradiation. The effect of ultrasound and microbubbles alone was also tested. Tumor volumes were measured by 3D ultrasound imaging. Acute normal-tissue toxicity from 12 Gy to the lower bowel area was assessed using an intestinal crypt assay in mice culled 3.75 days posttreatment. A significant delay in tumor growth was observed with conventional chemoradiation therapy and both microbubble groups (P < .05 compared with the radiation-only group). Transient weight loss was seen in the microbubble groups, which resolved within 10 days posttreatment. A positive correlation was found between weight loss on day 3 posttreatment and tumor growth delay (P < .05; R2 = 0.76). In contrast with conventional chemoradiation therapy, ultrasound-mediated drug delivery methods did not exacerbate the acute intestinal toxicity using the crypt assay. Ultrasound and microbubbles offer a promising new approach for improving chemoradiation therapy for muscle-invasive bladder cancer, maintaining a delay in tumor growth but with reduced acute intestinal toxicity compared with conventional chemoradiation therapy.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Avidin, Egg White