Accéder au contenu
Merck

Maize Endochitinase Expression in Response to Fall Armyworm Herbivory.

Journal of chemical ecology (2021-06-01)
Yang Han, Erin B Taylor, Dawn Luthe
RÉSUMÉ

A large percentage of crop loss is due to insect damage, especially caterpillar damage. Plant chitinases are considered excellent candidates to combat these insects since they can degrade chitin in peritrophic matrix (PM), an important protective structure in caterpillar midgut. Compared to chemical insecticides, chitinases could improve host plant resistance and be both economically and environmentally advantageous. The focus of this research was to find chitinase candidates that could improve plant resistance by effectively limiting caterpillar damage. Five classes of endochitinase (I-V) genes were characterized in the maize genome, and we isolated and cloned four chitinase genes (chitinase A, chitinase B, chitinase I, and PRm3) present in two maize (Zea mays L.) inbred lines Mp708 and Tx601, with different levels of resistance to caterpillar pests. We also investigated the expression of these maize chitinases in response to fall armyworm (Spodoptera frugiperda, FAW) attack. The results indicated that both chitinase transcript abundance and enzymatic activity increased in response to FAW feeding and mechanical wounding. Furthermore, chitinases retained activity inside the caterpillar midgut and enzymatic activity was detected in the food bolus and frass. When examined under scanning electron microscopy, PMs from Tx601-fed caterpillars showed structural damage when compared to diet controls. Analysis of chitinase transcript abundance after caterpillar feeding and proteomic analysis of maize leaf trichomes in the two inbreds implicated chitinase PRm3 found in Tx601 as a potential insecticidal protein.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Chitin azure, chitinase substrate