Accéder au contenu
Merck
  • Self-Assembled Monolayers of Nitron: Self-Activated and Chemically Addressable N-Heterocyclic Carbene Monolayers with Triazolone Structural Motif.

Self-Assembled Monolayers of Nitron: Self-Activated and Chemically Addressable N-Heterocyclic Carbene Monolayers with Triazolone Structural Motif.

Chemistry (Weinheim an der Bergstrasse, Germany) (2020-04-29)
Einav Amit, Iris Berg, Elad Gross
RÉSUMÉ

N-heterocyclic carbenes (NHCs) have emerged as a unique molecular platform for the formation of self-assembled monolayers (SAMs) on various surfaces. However, active carbene formation requires deprotonation of imidazolium salt precursors, which is mostly facilitated by exposure of the salt to exogenous base. Base residues were found to be adsorbed on the metal surface and hindered the formation of well-ordered carbene-based monolayers. Herein, we show that nitron, a triazolone-based compound that freely tautomerizes to a carbene, can spontaneously self-assemble into monolayers on Pt and Au surfaces, which obviates the necessity for base-induced deprotonation for active carbene formation. SAMs of nitron were found to be thermally stable and could not be displaced by thiols, and thus their high chemical stability was demonstrated. The amino group in surface-anchored nitron was shown to be chemically available for SN 2 reactions, and makes surface-anchored nitron a chemically addressable cross-linking reagent for surface modifications.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Potassium tert-butoxide, sublimed grade, 99.99% trace metals basis
Sigma-Aldrich
4-Nitrothiophenol, technical grade, 80%
Sigma-Aldrich
Bromonitromethane, technical grade, 90%
Sigma-Aldrich
Potassium tert-butoxide ChemBeads