Accéder au contenu
Merck

Inhibitory effect of Artocarpus lakoocha Roxb and oxyresveratrol on α-glucosidase and sugar digestion in Caco-2 cells.

Heliyon (2020-03-11)
Matusorn Wongon, Nanteetip Limpeanchob
RÉSUMÉ

Long-term diabetic complications are exacerbated by post-prandial hyperglycemia which could be ameliorated by α-glucosidase inhibitor including oxyresveratrol. Puag-Haad is an aqueous extract from Artocarpus lakoocha Roxb. containing ~65% oxyresveratrol. Oxyresveratrol is an inhibitor of isolated yeast α-glucosidase enzyme but has not been tested on intact gut enterocytes where the enzyme is membrane-bound. Accordingly, differentiated Caco-2 cells that contain the native enzyme were used to test maltose hydrolysis in the present study. The results demonstrated that purified yeast α-glucosidase was non-competitively inhibited by oxyresveratrol (Ki 54.4 ± 0.7 μg/mL) and Puag-Haad (2.7 ± 0.1 μg/mL) compared to 153.8 ± 4.3 μg/mL acarbose, an anti-diabetic drug. In differentiated Caco-2 cells, both oxyresveratrol and Puag-Haad inhibited maltose hydrolysis with lesser potency compared to acarbose. Thus, although weaker than acarbose, oxyresveratrol and Puag-Haad do not inhibit pancreatic amylase which might be a therapeutic asset in preventing fermentation of unabsorbed carbohydrate causes abdominal bloating, flatulence, or diarrhea. Oxyresveratrol and Puag-Haad may help control postprandial hyperglycemia with low risk of gastrointestinal side effects.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
α-Glucosidase from Saccharomyces cerevisiae, Type I, lyophilized powder, ≥10 units/mg protein (using p-nitrophenyl α-D-glucoside as substrate.)