Accéder au contenu
Merck
  • Switchable solvent N, N, N', N'-tetraethyl-1, 3-propanediamine was dissociated into cationic surfactant to promote cell disruption and lipid extraction from wet microalgae for biodiesel production.

Switchable solvent N, N, N', N'-tetraethyl-1, 3-propanediamine was dissociated into cationic surfactant to promote cell disruption and lipid extraction from wet microalgae for biodiesel production.

Bioresource technology (2020-06-07)
Jun Cheng, Hao Guo, Yi Qiu, Ze Zhang, Yuxiang Mao, Lei Qian, Weijuan Yang, Ji-Yeon Park
RÉSUMÉ

Switchable solvent N, N, N', N'-tetraethyl-1,3-propanediamine (TEPDA) was proposed to extract lipids from wet Nannochloropsis oceanica with a 5% higher extraction efficiency than chloroform-methanol. It was found that TEPDA acted mainly as an organic solvent to soften and dissolve lipids, while a small amount of TEPDA was dissociated into tertiary amine ion, i.e.,(C2H5)2N-(CH2)3-NH+(C2H5)2. This cation acted as a surfactant to promote cell disruption and lipid separation. With moisture increasing from 0 to 84 wt%, more TEPDA was dissociated into cationic surfactant to induce local rearrangement of phospholipid bilayers in cell membranes through electrostatic interaction, resulting in the fractal dimension of disrupted cells increased from 1.49 to 1.66. Accordingly, the yield of fatty acid methyl ester (FAME) through transesterification of lipids extracted with TEPDA increased by 9%, while FAME yield from lipids extracted with chloroform and n-hexane decreased by 41% and 65%, respectively.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Nonadécanoate de méthyle, ≥98% (GC)