Accéder au contenu
Merck

Heterometal-Doped M23 (M = Au/Ag/Cd) Nanoclusters with Large Dipole Moments.

ACS nano (2020-04-15)
Yingwei Li, Michael J Cowan, Meng Zhou, Michael G Taylor, He Wang, Yongbo Song, Giannis Mpourmpakis, Rongchao Jin
RÉSUMÉ

Dipole moment (μ) is a critical parameter for molecules and nanomaterials as it affects many properties. In metal-thiolate (SR) nanoclusters (NCs), μ is commonly low (0-5 D) compared to quantum dots. Herein, we report a doping strategy to give giant dipoles (∼18 D) in M23 (M = Au/Ag/Cd) NCs, falling in the experimental trend for II-VI quantum dots. In M23 NCs, high μ is caused by the Cd-Br bond and the arrangement of heteroatoms along the C3 axis. Strong dipole-dipole interactions are observed in crystalline state, with energy exceeding 5 kJ/mol, directing a "head-to-tail" alignment of Au22-nAg n Cd1(SR)15X (SR = adamantanethiolate) dipoles. The alignment can be controlled by μ via doping. The optical absorption peaks of M23 show solvent polarity-dependent shifts (∼25 meV) with negative solvatochromism. Detailed electronic structures of M23 are revealed by density functional theory and time-dependent DFT calculations. Overall, the doping strategy for obtaining large dipole moments demonstrates an atomic-level design of clusters with useful properties.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Cadmium chloride, 99.99% trace metals basis
Sigma-Aldrich
2-Methyl-2-propanethiol, 99%
Sigma-Aldrich
Phenylethyl mercaptan, ≥99%, FG