Accéder au contenu
Merck

Knockdown of Son, a mouse homologue of the ZTTK syndrome gene, causes neuronal migration defects and dendritic spine abnormalities.

Molecular brain (2020-05-26)
Masashi Ueda, Tohru Matsuki, Masahide Fukada, Shima Eda, Akie Toya, Akio Iio, Hidenori Tabata, Atsuo Nakayama
RÉSUMÉ

Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome, a rare congenital anomaly syndrome characterized by intellectual disability, brain malformation, facial dysmorphism, musculoskeletal abnormalities, and some visceral malformations is caused by de novo heterozygous mutations of the SON gene. The nuclear protein SON is involved in gene transcription and RNA splicing; however, the roles of SON in neural development remain undetermined. We investigated the effects of Son knockdown on neural development in mice and found that Son knockdown in neural progenitors resulted in defective migration during corticogenesis and reduced spine density on mature cortical neurons. The induction of human wild-type SON expression rescued these neural abnormalities, confirming that the abnormalities were caused by SON insufficiency. We also applied truncated SON proteins encoded by disease-associated mutant SON genes for rescue experiments and found that a truncated SON protein encoded by the most prevalent SON mutant found in ZTTK syndrome rescued the neural abnormalities while another much shorter mutant SON protein did not. These data indicate that SON insufficiency causes neuronal migration defects and dendritic spine abnormalities, which seem neuropathological bases of the neural symptoms of ZTTK syndrome. In addition, the results support that the neural abnormalities in ZTTK syndrome are caused by SON haploinsufficiency independent of the types of mutation that results in functional or dysfunctional proteins.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anticorps monoclonal anti-β-actine antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Anti-Splicing Factor SC-35 antibody, Mouse monoclonal, clone SC-35, purified from hybridoma cell culture