Accéder au contenu
Merck

Small Molecule Inhibition of CPS1 Activity through an Allosteric Pocket.

Cell chemical biology (2020-02-06)
Shihua Yao, Tuong-Vi Nguyen, Alan Rolfe, Anant A Agrawal, Jiyuan Ke, Shouyong Peng, Federico Colombo, Sean Yu, Patricia Bouchard, Jiayi Wu, Kuan-Chun Huang, Xingfeng Bao, Kiyoyuki Omoto, Anand Selvaraj, Lihua Yu, Stephanos Ioannidis, Frédéric H Vaillancourt, Ping Zhu, Nicholas A Larsen, David M Bolduc
RÉSUMÉ

Carbamoyl phosphate synthetase 1 (CPS1) catalyzes the first step in the ammonia-detoxifying urea cycle, converting ammonia to carbamoyl phosphate under physiologic conditions. In cancer, CPS1 overexpression supports pyrimidine synthesis to promote tumor growth in some cancer types, while in others CPS1 activity prevents the buildup of toxic levels of intratumoral ammonia to allow for sustained tumor growth. Targeted CPS1 inhibitors may, therefore, provide a therapeutic benefit for cancer patients with tumors overexpressing CPS1. Herein, we describe the discovery of small-molecule CPS1 inhibitors that bind to a previously unknown allosteric pocket to block ATP hydrolysis in the first step of carbamoyl phosphate synthesis. CPS1 inhibitors are active in cellular assays, blocking both urea synthesis and CPS1 support of the pyrimidine biosynthetic pathway, while having no activity against CPS2. These newly discovered CPS1 inhibitors are a first step toward providing researchers with valuable tools for probing CPS1 cancer biology.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Pyruvate Kinase/Lactic Dehydrogenase enzymes from rabbit muscle, For the Determination of ADP, buffered aqueous glycerol solution
Sigma-Aldrich
Orotic acid, ≥98% (titration), anhydrous
Sigma-Aldrich
H3B-120, ≥98% (HPLC)
Sigma-Aldrich
H3B-193, ≥98% (HPLC)