Accéder au contenu
Merck

Maleimide-functionalized lipids that anchor polypeptides to lipid bilayers and membranes.

Bioconjugate chemistry (2000-11-23)
J T Elliott, G D Prestwich
RÉSUMÉ

Two maleimide-containing diacylglycerol derivatives were synthesized to permit the anchoring of short peptides and longer polypeptides to phospholipid bilayers and membranes. The maleimide was introduced at the site normally occupied by a phospholipid headgroup. The first lipid, the dipalmitoyl ester of 1-maleimido-2,3-propanediol, was developed as a membrane anchor for extracellular domains of transmembrane proteins. The second anchoring lipid, in which the 3-position contained a 6-aminohexanoate, was designed for convenient modification with amine-reactive reporter groups. Specifically, the NBD fluorophore, 7-nitrobenzo-2-oxa-1, 3-diazole-aminohexanoic-N-hydroxysuccinimide ester, was attached to give an fluorescent anchoring reagent. Next, these reagents were applied to the anchoring of a C-terminally cysteamine-modified 8 kDa polypeptide that comprises the extracellular N-terminal domain of the human thrombin receptor, a transmembrane protease-activated receptor (PAR-1). Gel filtration and fluorescence analysis showed that the fluorescent lipopolypeptide spontaneously inserted into preformed phospholipid vesicles, but it did not insert into whole cell membranes. In contrast, the dipalmitoyl derivative could only be reconstituted into artificial membranes by mixing the lipopolypeptide and phospholipid before vesicle formation. These results suggest that biophysical interactions governing the lipopolypeptide insertion into artificial and cellular membranes may differ. The thiol-reactive lipidating reagents should be valuable materials for studying the structure and function of peptides and polypeptides at phospholipid bilayer surfaces.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Avanti
16:0 PE MCC, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidomethyl)cyclohexane-carboxamide] (sodium salt), chloroform