Accéder au contenu
Merck

Huntingtin phosphorylation governs BDNF homeostasis and improves the phenotype of Mecp2 knockout mice.

EMBO molecular medicine (2020-01-09)
Yann Ehinger, Julie Bruyère, Nicolas Panayotis, Yah-Se Abada, Emilie Borloz, Valérie Matagne, Chiara Scaramuzzino, Hélène Vitet, Benoit Delatour, Lydia Saidi, Laurent Villard, Frédéric Saudou, Jean-Christophe Roux
RÉSUMÉ

Mutations in the X-linked MECP2 gene are responsible for Rett syndrome (RTT), a severe neurological disorder for which there is no treatment. Several studies have linked the loss of MeCP2 function to alterations of brain-derived neurotrophic factor (BDNF) levels, but non-specific overexpression of BDNF only partially improves the phenotype of Mecp2-deficient mice. We and others have previously shown that huntingtin (HTT) scaffolds molecular motor complexes, transports BDNF-containing vesicles, and is under-expressed in Mecp2 knockout brains. Here, we demonstrate that promoting HTT phosphorylation at Ser421, either by a phospho-mimetic mutation or inhibition of the phosphatase calcineurin, restores endogenous BDNF axonal transport in vitro in the corticostriatal pathway, increases striatal BDNF availability and synaptic connectivity in vivo, and improves the phenotype and the survival of Mecp2 knockout mice-even though treatments were initiated only after the mice had already developed symptoms. Stimulation of endogenous cellular pathways may thus be a promising approach for the treatment of RTT patients.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anti-Calnexin antibody produced in rabbit, IgG fraction of antiserum, buffered aqueous solution
Sigma-Aldrich
Anticorps anti-phospho-TrkB (Tyr816), from rabbit, purified by affinity chromatography
Millipore
Immobilon® Block - FL (bloqueur fluorescence), Fluorescent Detection for Western blotting, dot/slot blotting, mass spectrometry and fluorescence assays