Accéder au contenu
Merck
  • IL-17A promotes fatty acid uptake through the IL-17A/IL-17RA/p-STAT3/FABP4 axis to fuel ovarian cancer growth in an adipocyte-rich microenvironment.

IL-17A promotes fatty acid uptake through the IL-17A/IL-17RA/p-STAT3/FABP4 axis to fuel ovarian cancer growth in an adipocyte-rich microenvironment.

Cancer immunology, immunotherapy : CII (2019-12-06)
Chunyan Yu, Xiulong Niu, Yongrui Du, Yan Chen, Xiaomei Liu, Lingling Xu, Yoichiro Iwakura, Xiaoxia Ma, Yan Li, Zhi Yao, Weimin Deng
RÉSUMÉ

Pro-inflammatory cytokines are crucial mediators of cancer development, representing potential targets for cancer therapy. The molecular mechanism of a vital pro-inflammatory cytokine, IL-17A, in cancer progression and its potential use in therapy through influencing fatty acid (FA) metabolism, especially FA uptake of cancer cells, remains unknown. In the present study, we used IL-17A and ovarian cancer (OvCa), a representative of both obesity-related and inflammation-related cancers, to explore the interactions among IL-17A, cancer cells and adipocytes (which can provide FAs). We found that in the presence of palmitic acid (PA), IL-17A could directly increase the cellular uptake of PA, leading to the proliferation of OvCa cells via the IL-17A/IL-17RA/p-STAT3/FABP4 axis rather than via CD36. Moreover, in vivo experiments using an orthotopic implantation model in IL-17A-deficient mice demonstrated that endogenous IL-17A could fuel OvCa growth and metastasis with increased expression of FABP4 and p-STAT3. Furthermore, analysis of clinical specimens supported the above findings. Our data not only provide useful insights into the clinical intervention of the growth and metastasis of the tumors (such as OvCa) that are prone to growth and metastasis in an adipocyte-rich microenvironment (ARM) but also provides new insights into the roles of IL-17A in tumor progression and immunomodulatory therapy of OvCa.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Sodium palmitate, ≥98.5%
Sigma-Aldrich
FABP4 Inhibitor, The FABP4 Inhibitor, also referenced under CAS 300657-03-8, controls the biological activity of FABP4.