Accéder au contenu
Merck

Hydrogenation of CO2 to Formate using a Simple, Recyclable, and Efficient Heterogeneous Catalyst.

Inorganic chemistry (2019-03-02)
Gunniya Hariyanandam Gunasekar, Kwang-Deog Jung, Sungho Yoon
RÉSUMÉ

Today, one of the most imperative targets to realize the conversions of CO2 in industry is the development of practically viable catalytic systems that demonstrate excellent activity, selectivity, and durability. Herein, a simple heterogeneous Ru(III) catalyst is prepared by immobilizing commercially available RuCl3· xH2O onto a bipyridine-functionalized covalent triazine framework, [bpy-CTF-RuCl3], for the first time. This novel catalyst efficiently hydrogenates CO2 into formate with an unprecedented turnover frequency (38800 h-1) and selectivity. In addition, the catalyst excellently maintains its efficiency over successive runs and produces a maximum final formate concentration of ∼2.1 M in just 2.5 h with a conversion of 12% in regard to CO2 feed. The apparent advantages of air stability, ease of handling, simplicity, the use of a readily available metal precursor, and the outstanding catalytic performance make [bpy-CTF-RuCl3] one of the possible candidates for realizing the large-scale production of formic acid/formate by CO2 hydrogenation.