Accéder au contenu
Merck
  • Untargeted 1H NMR-Based Metabolomics Analysis of Urine and Serum Profiles after Consumption of Lentils, Chickpeas, and Beans: An Extended Meal Study To Discover Dietary Biomarkers of Pulses.

Untargeted 1H NMR-Based Metabolomics Analysis of Urine and Serum Profiles after Consumption of Lentils, Chickpeas, and Beans: An Extended Meal Study To Discover Dietary Biomarkers of Pulses.

Journal of agricultural and food chemistry (2018-06-20)
Francisco Madrid-Gambin, Carl Brunius, Mar Garcia-Aloy, Sheila Estruel-Amades, Rikard Landberg, Cristina Andres-Lacueva
RÉSUMÉ

High legume intake has been shown to have beneficial effects on the health of humans. The use of nutritional biomarkers, as a complement to self-reported questionnaires, could assist in evaluating dietary intake and downstream effects on human health. The aim of this study was to investigate potential biomarkers of the consumption of pulses (i.e., white beans, chickpeas, and lentils) by using untargeted NMR-based metabolomics. Meals rich in pulses were consumed by a total of 11 participants in a randomized crossover study and multilevel partial least-squares regression was employed for paired comparisons. Metabolomics analysis indicated that trigonelline, 3-methylhistidine, dimethylglycine, trimethylamine, and lysine were potential, though not highly specific, biomarkers of pulse intake. Furthermore, monitoring of these metabolites for a period of 48 h after intake revealed a range of different excretion patterns among pulses. Following the consumption of pulses, a metabolomic profiling revealed that the concentration ratios of trigonelline, choline, lysine, and histidine were similar to those found in urine. In conclusion, this study identified potential urinary biomarkers of exposure to dietary pulses and provided valuable information about the time-response effect of these putative biomarkers.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
3-(Trimethylsilyl)-1-propanesulfonic acid-d6 sodium salt, 98 atom % D