Accéder au contenu
Merck
  • Bioactivity-Guided Metabolite Profiling of Feijoa ( Acca sellowiana) Cultivars Identifies 4-Cyclopentene-1,3-dione as a Potent Antifungal Inhibitor of Chitin Synthesis.

Bioactivity-Guided Metabolite Profiling of Feijoa ( Acca sellowiana) Cultivars Identifies 4-Cyclopentene-1,3-dione as a Potent Antifungal Inhibitor of Chitin Synthesis.

Journal of agricultural and food chemistry (2018-03-17)
Mona Mokhtari, Michael D Jackson, Alistair S Brown, David F Ackerley, Nigel J Ritson, Robert A Keyzers, Andrew B Munkacsi
RÉSUMÉ

Pathogenic fungi continue to develop resistance against current antifungal drugs. To explore the potential of agricultural waste products as a source of novel antifungal compounds, we obtained an unbiased GC-MS profile of 151 compounds from 16 commercial and experimental cultivars of feijoa peels. Multivariate analysis correlated 93% of the compound profiles with antifungal bioactivities. Of the 18 compounds that significantly correlated with antifungal activity, 5 had not previously been described from feijoa. Two novel cultivars were the most bioactive, and the compound 4-cyclopentene-1,3-dione, detected in these cultivars, was potently antifungal (IC50 = 1-2 μM) against human-pathogenic Candida species. Haploinsufficiency and fluorescence microscopy analyses determined that the synthesis of chitin, a fungal-cell-wall polysaccharide, was the target of 4-cyclopentene-1,3-dione. This fungal-specific mechanism was consistent with a 22-70-fold reduction in antibacterial activity. Overall, we identified the agricultural waste product of specific cultivars of feijoa peels as a source of potential high-value antifungal compounds.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
4-Cyclopentene-1,3-dione, 95%