Accéder au contenu
Merck
Toutes les photos(2)

Key Documents

930946

Sigma-Aldrich

Lithium nitrate

greener alternative

battery grade, ≥99.9% trace metals basis

Synonyme(s) :

Lithium salt of nitric acid

Se connecterpour consulter vos tarifs contractuels et ceux de votre entreprise/organisme


About This Item

Formule linéaire :
LiNO3
Numéro CAS:
Poids moléculaire :
68.95
Numéro MDL:
Code UNSPSC :
12352302
Nomenclature NACRES :
NA.21

Niveau de qualité

Qualité

battery grade

Pureté

≥99.9% trace metals basis

Forme

powder

Caractéristiques du produit alternatif plus écologique

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

Impuretés

≤0.5 wt. % H2O
≤1000 ppm (trace metals analysis)

Pf

264 °C (lit.)

Solubilité

H2O: soluble (highly soluble(lit.))
acetone: soluble ((lit.))
alcohols: soluble ((lit.))

Traces d'anions

chloride (Cl-): ≤500 ppm
sulfate (SO42-): ≤200 ppm

Application(s)

battery manufacturing

Autre catégorie plus écologique

Chaîne SMILES 

[Li+].[O-][N+]([O-])=O

InChI

1S/Li.NO3/c;2-1(3)4/q+1;-1

Clé InChI

IIPYXGDZVMZOAP-UHFFFAOYSA-N

Vous recherchez des produits similaires ? Visite Guide de comparaison des produits

Description générale

Anhydrous lithium nitrate is a white, crystalline salt. The anhydrous form is hygroscopic and deliquescent. The salt is soluble in water, ethanol, methanol, pyridine, ammonia, and acetone. Like some other metal nitrates, lithium nitrate has a low melting point of only 264 °C, and decomposes above 600 °C. Because of its low melting point, it is used to produce low-melting fused-salt mixtures in ceramics and heat-exchange media.
Lithium nitrate is produced by the acid-base reaction between nitric acid and lithium carbonate, which evolves carbon dioxide and water. The resulting material is dried, purified, and heated to form the anhydrous product.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more information.

Application

Researchers and manufacturers use lithium nitrate in the preparation of many lithium compounds, most notably lithium nickel oxide (LiNiO2) and lithium manganese oxide (LiMn2O4). One common strategy for synthesizing these lithium metal oxides involves a high-temperature reaction of lithium nitrate with a metal carbonate, like nickel carbonate, or with a metal oxide, like manganese oxide. At temperatures above 650 °C, lithium nitrate evolves oxygen gas and nitrogen dioxide gas and decomposes through a complex process into lithium oxide, which reacts with the metal precursors to form the tertiary or quaternary lithium metal oxides. Researchers have used this technique to prepare exciting new materials, like LiAl0.25Ni0.75O2 as a cathode material in lithium-ion batteries and LiGa5O8 as a phosphor for optical information storage.
Because lithium nitrate is soluble in water, researchers also use lithium nitrate in the synthesis of lithium compounds using a host of solution-based chemistries. For example, microwave-induced combustion using solutions of lithium nitrate has yielded olivine-type lithium iron phosphate (LiFePO4), lithium cobalt oxide (LiCoO2), and lithium titanium oxides (ex. Li4Ti5O12 and Li2TiO3). Hydrothermal processing, sol-gel processing, spray pyrolysis, co-precipitation pre-processing, and Li emulsion-drying methods have all used lithium nitrate as a reactant to form lithium metal oxides. These techniques can yield controlled particle size, grain size, crystallinity, or facilitate the introduction of dopants for engineering the properties of the products, often explored for next-generation lithium-ion batteries.
Our battery grade lithium nitrate with ≥99.9% trace metals purity and low chloride and sulfate impurities, is designed as a precursor for cathode materials for lithium-ion batteries.

Pictogrammes

Flame over circleExclamation mark

Mention d'avertissement

Warning

Mentions de danger

Classification des risques

Acute Tox. 4 Oral - Eye Irrit. 2 - Ox. Sol. 3

Code de la classe de stockage

5.1B - Oxidizing hazardous materials

Classe de danger pour l'eau (WGK)

WGK 1

Point d'éclair (°F)

Not applicable

Point d'éclair (°C)

Not applicable


Faites votre choix parmi les versions les plus récentes :

Certificats d'analyse (COA)

Lot/Batch Number

Vous ne trouvez pas la bonne version ?

Si vous avez besoin d'une version particulière, vous pouvez rechercher un certificat spécifique par le numéro de lot.

Déjà en possession de ce produit ?

Retrouvez la documentation relative aux produits que vous avez récemment achetés dans la Bibliothèque de documents.

Consulter la Bibliothèque de documents

A review of recent developments in the synthesis procedures of lithium iron phosphate powders.
Jugovic D, et al.
Journal of Power Sources, 190, 538-544 (2009)
Synthesis Conditions and Oxygen Stoichiometry Effects on Li Insertion into the Spinel LiMn2O4
Tarascon J M, et al.
Journal of the Electrochemical Society, 141, 1421-1421 (1994)
Synthesis and Characterization of LiAI1/4Ni3/4O2 (R3m) for Lithium-Ion (Shuttlecock) Batteries.
Ohzuku T, et al.
Journal of the Electrochemical Society, 142, 4033-4033 (1995)
Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells
Ohzuku T, et al.
Journal of the Electrochemical Society, 140, 1862-1862 (1993)
Feng Liu et al.
Scientific reports, 3, 1554-1554 (2013-03-28)
In conventional photostimulable storage phosphors, the optical information written by x-ray or ultraviolet irradiation is usually read out as a visible photostimulated luminescence (PSL) signal under the stimulation of a low-energy light with appropriate wavelength. Unlike the transient PSL, here

Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..

Contacter notre Service technique