Skip to Content
Merck
  • The nucleoprotein of influenza A virus induces p53 signaling and apoptosis via attenuation of host ubiquitin ligase RNF43.

The nucleoprotein of influenza A virus induces p53 signaling and apoptosis via attenuation of host ubiquitin ligase RNF43.

Cell death & disease (2015-05-23)
H Nailwal, S Sharma, A K Mayank, S K Lal
ABSTRACT

The interplay between influenza virus and host factors to support the viral life cycle is well documented. Influenza A virus (IAV) proteins interact with an array of cellular proteins and hijack host pathways which are at the helm of cellular responses to facilitate virus invasion. The multifaceted nature of the ubiquitination pathway for protein regulation makes it a vulnerable target of many viruses including IAV. To this end we conducted a yeast two-hybrid screen to search for cellular ubiquitin ligases important for influenza virus replication. We identified host protein, RING finger protein 43 (RNF43), a RING-type E3 ubiquitin ligase, as a novel interactor of nucleoprotein (NP) of IAV and an essential partner to induce NP-driven p53-mediated apoptosis in IAV-infected cells. In this study, we demonstrate that IAV leads to attenuation of RNF43 transcripts and hence its respective protein levels in the cellular milieu whereas in RNF43 depleted cells, viral replication was escalated several folds. Moreover, RNF43 polyubiquitinates p53 which further leads to its destabilization resulting in a decrease in induction of the p53 apoptotic pathway, a hitherto unknown process targeted by NP for p53 stabilization and accumulation. Collectively, these results conclude that NP targets RNF43 to modulate p53 ubiquitination levels and hence causes p53 stabilization which is conducive to an enhanced apoptosis level in the host cells. In conclusion, our study unravels a novel strategy adopted by IAV for utilizing the much conserved ubiquitin proteasomal pathway.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Cycloheximide, ≥90% (HPLC)
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Imidazole, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Cycloheximide, Biotechnology Performance Certified
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Imidazole, ReagentPlus®, 99%
Sigma-Aldrich
Streptomycin sulfate salt, powder
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Imidazole, for molecular biology, ≥99% (titration)
Sigma-Aldrich
Streptomycin sulfate salt, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Imidazole, ≥99% (titration), crystalline
Sigma-Aldrich
Imidazole, ACS reagent, ≥99% (titration)
Sigma-Aldrich
Cycloheximide, from microbial, ≥94% (TLC)
Sigma-Aldrich
Nitrilotriacetic acid trisodium salt, Sigma Grade, ≥98%
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Streptomycin sulfate salt, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Imidazole, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Imidazole, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Anti-RNF43 antibody produced in rabbit, affinity isolated antibody