Skip to Content
Merck
  • Fundamental x-ray interaction limits in diagnostic imaging detectors: frequency-dependent Swank noise.

Fundamental x-ray interaction limits in diagnostic imaging detectors: frequency-dependent Swank noise.

Medical physics (2008-08-14)
G Hajdok, J J Battista, I A Cunningham
ABSTRACT

A frequency-dependent x-ray Swank factor based on the "x-ray interaction" modulation transfer function and normalized noise power spectrum is determined from a Monte Carlo analysis. This factor was calculated in four converter materials: amorphous silicon (a-Si), amorphous selenium (a-Se), cesium iodide (CsI), and lead iodide (PbI2) for incident photon energies between 10 and 150 keV and various converter thicknesses. When scaled by the quantum efficiency, the x-ray Swank factor describes the best possible detective quantum efficiency (DQE) a detector can have. As such, this x-ray interaction DQE provides a target performance benchmark. It is expressed as a function of (Fourier-based) spatial frequency and takes into consideration signal and noise correlations introduced by reabsorption of Compton scatter and photoelectric characteristic emissions. It is shown that the x-ray Swank factor is largely insensitive to converter thickness for quantum efficiency values greater than 0.5. Thus, while most of the tabulated values correspond to thick converters with a quantum efficiency of 0.99, they are appropriate to use for many detectors in current use. A simple expression for the x-ray interaction DQE of digital detectors (including noise aliasing) is derived in terms of the quantum efficiency, x-ray Swank factor, detector element size, and fill factor. Good agreement is shown with DQE curves published by other investigators for each converter material, and the conditions required to achieve this ideal performance are discussed. For high-resolution imaging applications, the x-ray Swank factor indicates: (i) a-Si should only be used at low-energy (e.g., mammography); (ii) a-Se has the most promise for any application below 100 keV; and (iii) while quantum efficiency may be increased at energies just above the K edge in CsI and PbI2, this benefit is offset by a substantial drop in the x-ray Swank factor, particularly at high spatial frequencies.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cesium iodide, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Cesium iodide, 99.999% trace metals basis
Sigma-Aldrich
Cesium iodide, 99.9% trace metals basis
Supelco
Cesium iodide, analytical standard, suitable for mass spectrometry (MS)