- Quantum-classical description of the amide I vibrational spectrum of trialanine.
Quantum-classical description of the amide I vibrational spectrum of trialanine.
A quantum-classical description of the amide I vibrational spectrum of trialanine cation in D2O is given that combines (i) a classical molecular dynamics simulation of the conformational distribution of the system, (ii) comprehensive density functional theory calculations of the conformation-dependent and solvent-induced frequency fluctuations, and (iii) a semiclassical description of the vibrational line shapes which includes nonadiabatic transitions between vibrational eigenstates. Various assumptions that are usually employed in the calculation of condensed-phase vibrational spectra are tested, including the adiabatic, the Franck-Condon, and the second-order cumulant approximations, respectively. All three parts of the theoretical formulation are shown to have a significant impact on the simulated spectrum, suggesting that the interpretation of peptide amide I spectra may require substantial theoretical support.