Skip to Content
Merck
  • Repetitive injection method: a tool for investigation of injection zone formation and its compression in microfluidic liquid chromatography.

Repetitive injection method: a tool for investigation of injection zone formation and its compression in microfluidic liquid chromatography.

Journal of chromatography. A (2015-01-22)
Martin Gilar, Thomas S McDonald, Gregory Roman, Jay S Johnson, James P Murphy, James W Jorgenson
ABSTRACT

Sample introduction in microfluidic liquid chromatography often generates wide zones rather than peaks, especially when a large sample volume (relative to column volume) is injected. Formation of wide injection zones can be further amplified when the sample is dissolved in a strong eluent. In some cases sample breakthrough may occur, especially when the injection is performed into short trapping columns. To investigate the band formation and subsequent zone focusing under gradient elution in situations such as these, we developed the Repetitive Injection Method (RIM), based on the temporally resolved introduction of two discrete peaks to a column, mimicking both the leading and trailing edges of a larger, singly injected sample zone. Using titanium microfluidic 0.32 mm I.D. columns, the results of RIM experiments were practically identical to injection of a correspondingly larger single zone volume. It was also experimentally shown that zone width (spacing between two injected peaks) decreases during gradient elution. We utilized RIM experiments to investigate wide sample zones created by strong sample solvent, and subsequent gradient zone focusing for a series of compounds. This experimental work was compared with computationally simulated chromatograms. The success of sample focusing during injection and gradient elution depends not only on an analyte's absolute retention, but also on how rapidly the analyte's retention changes during the mobile phase gradient.

MATERIALS
Product Number
Brand
Product Description

Supelco
Acetophenone, analytical standard
Sigma-Aldrich
Butyrophenone, ≥99%
Sigma-Aldrich
Indole, ≥99%, FG
Sigma-Aldrich
Acetophenone, puriss. p.a., ≥99.0% (GC)
Sigma-Aldrich
Acetophenone, ≥98%, FG
Sigma-Aldrich
Indole, ≥99%
Sigma-Aldrich
Hexanophenone, 99%
Sigma-Aldrich
Acetophenone, ReagentPlus®, 99%
Sigma-Aldrich
Valerophenone, 99%
Supelco
Acetophenone, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
Acetophenone, natural, 98%, FG
Supelco
Propiophenone, analytical standard
Supelco
Residual Solvent - Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Uracil, BioReagent, suitable for cell culture
Sigma-Aldrich
Reserpine
Sigma-Aldrich
Uracil, ≥99.0%
Supelco
Reserpine Standard for LC-MS, analytical standard, for LC-MS
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Formic acid, ACS reagent, ≥88%
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Sigma-Aldrich
Acetonitrile, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Reserpine, crystallized, ≥99.0% (HPLC)
Fluorouracil impurity C, European Pharmacopoeia (EP) Reference Standard