Skip to Content
Merck
  • Immediate and transient phosphorylation of the heat shock protein 27 initiates chemoresistance in prostate cancer cells.

Immediate and transient phosphorylation of the heat shock protein 27 initiates chemoresistance in prostate cancer cells.

Oncology reports (2014-09-19)
Matthias B Stope, Martin Weiss, Melanie Preuss, Andreas Streitbörger, Christoph A Ritter, Uwe Zimmermann, Reinhard Walther, Martin Burchardt
ABSTRACT

Drug resistance minimizes the effects of prostate cancer (PC) chemotherapy with docetaxel and is generally considered to be associated with the expression of heat shock protein (HSP) 27 including various cytoprotective pathways. In the present study, we investigated the effects of HSP27 phosphorylation on PC cell growth underlying docetaxel treatment. Cell counting revealed significantly reduced cell growth during docetaxel treatment as a result of both activation of mitogen-activated protein kinase p38 (MAPK p38) and protein kinase D1 (PKD1), and, most importantly, the overexpression of the phosphorylation-mimicking mutant HSP27-3D. Further analysis revealed a docetaxel-dependent induction of HSP27 accompanied by an initial phosphorylation and rapid dephosphorylation of the protein. Based on the data, we can conclude that phosphorylation of HSP27 protein is a crucial mechanism in the initiation of chemoresistance in PC. Moreover, the results indicate a key impact of HSP27 on viability and proliferation of PC cells underlying anticancer therapy. The protective function depends on the initial phosphorylation status of HSP27 and represents a putative co-therapeutic target to prevent chemoresistance during docetaxel therapy.

MATERIALS
Product Number
Brand
Product Description

Supelco
Sorbitol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
D-Sorbitol, liquid, tested according to Ph. Eur.
Sigma-Aldrich
Docetaxel, purum, ≥97.0% (HPLC)
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥99.0% (T)
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Sigma-Aldrich
D-Sorbitol, BioUltra, ≥99.0% (HPLC)
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
D-Sorbitol, FCC, FG
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Supelco
Sodium dodecyl sulfate, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90% ((Assay))
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
D-Sorbitol, 99% (GC)
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sorbitol F solution, 70 wt. % in H2O, Contains mainly D-sorbitol with lesser amounts of other hydrogenated oligosaccharides
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
D-Sorbitol, ≥98% (GC)
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥98.5% (GC)
Sigma-Aldrich
D-Sorbitol, ≥98% (GC), BioReagent, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M