Skip to Content
Merck
  • Cytotoxicity and genotoxicity of orthodontic bands with or without silver soldered joints.

Cytotoxicity and genotoxicity of orthodontic bands with or without silver soldered joints.

Mutation research. Genetic toxicology and environmental mutagenesis (2014-02-06)
Tatiana Siqueira Gonçalves, Luciane Macedo de Menezes, Cristiano Trindade, Miriana da Silva Machado, Philip Thomas, Michael Fenech, João Antonio Pêgas Henriques
ABSTRACT

Stainless steel bands, with or without silver soldered joints, are routinely used in orthodontics. However, little is known about the toxic biological effects of these appliances. The aims of this study were to evaluate the cytotoxic, cytostatic, genotoxic and DNA damage-inducing effects of non-soldered bands (NSB) and silver soldered bands (SSB) on the HepG2 and HOK cell lines and to quantify the amount of ions released by the bands. The 24-h metallic eluates of NSBs and SSBs were quantified by atomic absorption spectrophotometry. An MTT reduction assay was performed to evaluate the cytotoxicity, alkaline and modified comet assays were employed to measure genotoxicity and oxidative DNA damage effects, and cytokinesis-block micronucleus cytome (CBMN-Cyt) assays were used to verify DNA damage, cytostasis and cytotoxicity. Ag, Cd, Cr, Cu and Zn were detected in SSB medium samples, and Fe and Ni were detected in both the SSB and NSB medium samples. The SSB group induced stronger cytotoxic effects than the NSB group in both evaluated cell lines. NSB and SSB induced genotoxicity as evaluated by comet assays; stronger effects were observed in the SSB group. Both groups induced similar increases in the number of oxidative DNA lesions, as detected by the FPG and Endo III enzymes. Nucleoplasmic bridges, biomarkers of DNA misrepair and/or telomere end fusions, were significantly elevated in the SSB group. The SSB eluates showed higher amounts of Ni and Fe than NSB, and all the quantified ions were detected in SSB eluates, including Cd. The SSB eluates were more cytotoxic and genotoxic than the NSB samples. Based on these results, we propose that other brands, materials and techniques should be further investigated for the future manufacture of orthodontic appliances.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Silica, nanopowder, 99.8% trace metals basis
Sigma-Aldrich
Silica, mesostructured, MCM-41 type (hexagonal)
Supelco
Hydrogen peroxide solution, 30 % (w/w), for ultratrace analysis
Sigma-Aldrich
Silica, nanoparticles, mesoporous, 200 nm particle size, pore size 4 nm
Sigma-Aldrich
Silicon dioxide, single crystal substrate, optical grade, 99.99% trace metals basis, L × W × thickness 10 mm × 10 mm × 0.5 mm
Sigma-Aldrich
Silicon dioxide, nanopowder (spherical, porous), 5-20 nm particle size (TEM), 99.5% trace metals basis
Sigma-Aldrich
Silicon dioxide, nanopowder, 10-20 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Silicon dioxide, granular, ≥99.9%
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Silicon dioxide, washed and calcined, analytical reagent
Sigma-Aldrich
Hydrogen peroxide solution, tested according to Ph. Eur.
Sigma-Aldrich
Silicon dioxide, acid washed
Millipore
Hydrogen peroxide solution, 3%, suitable for microbiology
Sigma-Aldrich
Silicon dioxide, fused (granular), 4-20 mesh, 99.9% trace metals basis
Sigma-Aldrich
Silicon dioxide, fused (pieces), 4 mm, 99.99% trace metals basis
Sigma-Aldrich
Silicon dioxide, −325 mesh, 99.5% trace metals basis
Sigma-Aldrich
LUDOX® TM-40 colloidal silica, 40 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® SM colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® HS-30 colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® LS colloidal silica, 30 wt. % suspension in H2O
Supelco
Sodium dodecyl sulfate, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90% ((Assay))
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Supelco
Silica, 99.8%
Sigma-Aldrich
LUDOX® CL colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Silica