Skip to Content
Merck
  • Solar energy assisted starch-stabilized palladium nanoparticles and their application in C-C coupling reactions.

Solar energy assisted starch-stabilized palladium nanoparticles and their application in C-C coupling reactions.

Journal of nanoscience and nanotechnology (2013-08-02)
Aniruddha B Patil, Bhalchandra M Bhanage
ABSTRACT

Present work reports a novel one step, greener protocol for the synthesis of starch-stabilized palladium nanoparticles (PdNPs) with an average particle diameter of 30-40 nm. These particles were stable and uniform in size. In present protocol, the concentrated solar energy mediated reduction of palladium chloride was achieved by using citric acid as a reducing agent and starch as a capping agent. UV-Visible spectroscopy, Transmission Electron Microscopy, Field Emission Gun-Scanning Electron Microscopy, Selected Area Electron Diffraction and Electron dispersive X-ray Spectral analysis techniques were used to characterize this starch capped PdNPs. Herein; we are reporting such combination of starch and citric acid in the synthesis of PdNPs for the first time. The catalytic activity of synthesized nanoparticles has been checked for Suzuki and Heck cross coupling reactions. The product yield was confirmed by GC. The products were confirmed using GC-MS analysis and also using GC with the help of authentic standards. Solar energy assisted starch stabilized PdNPs showed excellent activity in the C-C bond formation between aryl halides (I, Br) with phenyl boronic acid and its derivatives. In addition, the catalyst showed good activity in the Heck coupling reaction of C-C bond formation of aryl halides with aromatic alkene. The use of starch, citric acid, water and solar energy makes present protocol greener.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Starch from potato, Soluble
Sigma-Aldrich
Starch from potato, Powder
Sigma-Aldrich
Starch from wheat, Unmodified
Sigma-Aldrich
Starch from potato, suitable for electrophoresis
Sigma-Aldrich
Activated Charcoal Norit®, Norit® RB3, for gas purification, steam activated, rod
Sigma-Aldrich
Activated Charcoal Norit®, Norit® GAC 1240W, from coal, for potable water processing, steam activated, granular
Sigma-Aldrich
Activated Charcoal Norit®, Norit® CA1, wood, chemically activated, powder
Sigma-Aldrich
Activated Charcoal Norit®, Norit® SX2, powder, from peat, multi-purpose activated charcoal, steam activated and acid washed
Sigma-Aldrich
Activated Charcoal Norit®, Norit® PK 1-3, from peat, steam activated, granular
Sigma-Aldrich
Palladium, nanopowder, <25 nm particle size (TEM), ≥99.5%
Supelco
Activated charcoal, for the determination of AOX, 50-150 μm particle size
Sigma-Aldrich
Palladium, foil, thickness 1.0 mm, 99.9% trace metals basis
Sigma-Aldrich
Palladium, foil, thickness 0.25 mm, 99.98% trace metals basis
Sigma-Aldrich
Palladium, powder or granules, 99.99% trace metals basis
Sigma-Aldrich
Palladium, wire, diam. 0.5 mm, 99.9% trace metals basis
Sigma-Aldrich
Palladium, powder, 99.995% trace metals basis
Supelco
Activated Charcoal Norit®, Norit® RBAA-3, rod
Supelco
Activated charcoal, powder
Millipore
Activated charcoal, suitable for GC
Supelco
Activated charcoal, puriss. p.a., powder
Sigma-Aldrich
Palladium, wire, diam. 1.0 mm, 99.9% trace metals basis
Sigma-Aldrich
Palladium, foil, thickness 0.025 mm, 99.9% trace metals basis
Sigma-Aldrich
Starch, from potato, acc. to Zulkowsky (starch, treated with glycerol at 190°C)
Sigma-Aldrich
Palladium, sponge, 99.9% trace metals basis
Sigma-Aldrich
Starch, from potato, tested according to Ph. Eur.
Sigma-Aldrich
Starch, puriss. p.a., from potato, reag. ISO, reag. Ph. Eur., soluble
Sigma-Aldrich
Palladium, powder, <1 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Palladium, foil, thickness 0.5 mm, 99.9% trace metals basis
Sigma-Aldrich
Palladium, evaporation slug, diam. × L 0.6 cm × 0.6 cm, 99.95% trace metals basis
Sigma-Aldrich
Carbon, glassy, spherical powder, 2-12 μm, 99.95% trace metals basis