Skip to Content
Merck
  • B7-H4 Immune Checkpoint Protein Affects Viability and Targeted Therapy of Renal Cancer Cells.

B7-H4 Immune Checkpoint Protein Affects Viability and Targeted Therapy of Renal Cancer Cells.

Cells (2022-05-15)
Maite Emaldi, Caroline E Nunes-Xavier
ABSTRACT

Targeted therapy in combination with immune checkpoint inhibitors has been recently implemented in advanced or metastatic renal cancer treatment. However, many treated patients either do not respond or develop resistance to therapy, making alternative immune checkpoint-based immunotherapies of potential clinical benefit for specific groups of patients. In this study, we analyzed the global expression of B7 immune checkpoint family members (PD-L1, PD-L2, B7-H2, B7-H3, B7-H4, B7-H5, B7-H6, and B7-H7) in human renal cancer cells (Caki-1, A-498, and 786-O cell lines) upon treatment with clinically relevant targeted drugs, including tyrosine kinase inhibitors (Axitinib, Cabozantinib, and Lenvatinib) and mTOR inhibitors (Everolimus and Temsirolimus). Gene expression analysis by quantitative PCR revealed differential expression patterns of the B7 family members in renal cancer cell lines upon targeted drug treatments. B7-H4 gene expression was upregulated after treatment with various targeted drugs in Caki-1 and 786-O renal cancer cells. Knocking down the expression of B7-H4 by RNA interference (RNAi) using small interfering RNA (siRNA) decreased renal cancer cell viability and increased drug sensitivity. Our results suggest that B7-H4 expression is induced upon targeted therapy in renal cancer cells and highlight B7-H4 as an actionable immune checkpoint protein in combination with targeted therapy in advanced renal cancer cases resistant to current treatments.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-DYKDDDDK (FLAG® epitope tag) Antibody, clone 2EL-1B11, ascites fluid, clone 2EL-1B11, Chemicon®